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Abstract
With the widespread use of sophisticated machine
learning models in sensitive applications, under-
standing their decision-making has become an es-
sential task. Models trained on tabular data have
witnessed significant progress in explanations of
their underlying decision making processes by
virtue of having a small number of discrete fea-
tures. However, applying these methods to high-
dimensional inputs such as images is not a trivial
task. Images are composed of pixels at an atomic
level and do not carry any interpretability by them-
selves. In this work, we seek to use annotated
high-level interpretable features of images to pro-
vide explanations. We leverage the Shapley value
framework from Game Theory, which has gar-
nered wide acceptance in general XAI problems.
By developing a pipeline to generate counterfactu-
als and subsequently using it to estimate Shapley
values, we obtain contrastive and interpretable
explanations with strong axiomatic guarantees.

1. Introduction
Understanding the decision-making rationale behind compli-
cated black-box models has emerged as one of the most crit-
ical tasks in the greater overarching goal of making AI sys-
tems transparent and trustworthy. Amidst several proposed
methods, the well-studied concept of Shapley values (Win-
ter, 2002) from Game Theory literature has emerged as a
principled framework to obtain feature attributions as expla-
nations. By virtue of their strong axiomatic guarantees, they
lend themselves favorably to the task of distributing model
outputs fairly among the different input features. However,
one of the major issues in using Shapley values for model
explanation is the computation time (Van den Broeck et al.,
2021). It grows exponentially with the number of features
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involved. This problem is particularly exacerbated in end-
to-end models that operate directly on images since, usually,
the features in images are defined on a pixel level. This
results in thousands of features. In addition, the individual
pixel values are not interpretable to humans, and therefore
any attribution attached to individual pixels does not help
with high-level model understanding. It has also been shown
that humans understand and explain things by comparison
and contrast (De Graaf & Malle, 2017). On their own, fea-
ture attribution numbers obtained by Shapley values do not
allow for this contrastive notion and lack a reference or vi-
sual aid to compare to. This has been an essential barrier for
generating explanations based on Shapley values (Kumar
et al., 2020).

To close the gap, we propose an approach that incorporates
high-level interpretable features and employs generative
models to produce counterfactual images corresponding to
specific changes in the interpretable features. These coun-
terfactuals are then used to compute Shapley values which
explain the difference in prediction scores between the orig-
inal and counterfactual image. This process enables us to
understand model behavior using the contrastive explana-
tions (w.r.t. Shaply values) provided for arbitrary input
images.

2. Related Work
Shapley values have been widely used in the context of
Explainable AI (XAI) to provide feature attributions as ex-
planations (Lundberg & Lee, 2017; Datta et al., 2016). How-
ever, since computing Shapley values is intractable (Van den
Broeck et al., 2021), various approximations have been
used (Sundararajan & Najmi, 2020). For models that work
on images as inputs, popular techniques include aggregating
neighboring pixels to form sub-pixels (Ribeiro et al., 2016)
to be more interpretabile. Other works require gradients
to obtain pixel-level explanations and try to compute them
efficiently (Li et al., 2020). We propose a model-agnostic
approach that generates explanations in terms of a limited
number of high-level human interpretable features.

Significant work has gone in to producing contrastive ex-
planations (Kommiya Mothilal et al., 2021; Galhotra et al.,
2021). These have primarily been shown to work on struc-
tured tabular data. Counterfactual image generation has also
been an active space of research (Nemirovsky et al., 2020;
Samangouei et al., 2018). Often they require re-training a
generative model (Dash et al., 2022), which is expensive
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Figure 1. Examples of original images and their corresponding counterfactual images. The values below the images represent the model’s
prediction for Attractiveness. We generate the counterfactual images according to known specifications. For instance, C1 was obtained
from O1 by increasing baldness and maleness while decreasing youngness, heavy makeup, and blond hair. Similarly, C4 was generated
from O4 by increasing youngness, blond hair, heavy makeup, and decreasing maleness and baldness. We use Shapley values to explain
the difference between the original images and their counterfactual images in terms of the modified interpretable attributes in Table 1.

or are specific to the choice of generative model (Abdal
et al., 2021). We provide a minimal and scalable training
process by utilizing only pretrained GANs for generating
counterfactual images.

Recent work by (de Mijolla et al., 2020) comes closest to
our work and seeks to use Shapley values to explain models
trained on high dimensional data. They use classical com-
puter vision techniques to generate interpretable features.
In contrast, we use generative models to produce counter-
factual images to compute Shapley values efficiently while
also providing contrastive explanations.

3. Background
3.1. Contrastive Counterfactuals & Generative Models

Contrastive counterfactuals have been the building blocks
of ideas in philosophy and cognition that guide people’s
understanding and dictate how we explain things to one an-
other (De Graaf & Malle, 2017) and have been argued to be
central to explainable AI (Miller, 2019). We are specifically
interested in the implementation of this framework in the

image classification problem in order to allow us to generate
counterfactual images at will such that they increase or de-
crease the presence of a set of interpretable feature attributes.
Generative models are vastly popular in different fields of
AI, and their recent advancements in creating realistic im-
ages have made them a viable approach to produce a latent
representation of an image dataset. In our experiments, we
utilize StyleGAN2 (Karras et al., 2020) as a state-of-the-art
generative model which can be used to generate high reso-
lution and realistic images in different domains. StyleGAN
feeds the latent variable into a mapping network that trans-
forms it into an intermediate latent variable. Aside from its
ability to produce styles, this transformation also provides
the intermediary latent space as a more regulated domain to
learn and traverse through interpretable attributes. We use
the manipulation of this latent space to provide us with real-
istic counterfactual images according to our specifications.

3.2. Shapley Values

Shapley value is a concept from Game Theory that provides
a unique solution to fairly allocating the total payout from a
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game to its individual players. A coalition is a set of players
playing the game. A grand coalition contains all the players,
while an empty coalition contains none. A value function
v(S) provides the scores obtained by the coalition S on
playing the game. The score obtained by playing the game
is called the payoff.
In the context of XAI, Shapley values have been used as a
means to obtain feature contribution. The input features are
the players in this game of obtaining predictions from the
model. The prediction is then fairly distributed among the
input features. For a coalition set S, the following formula
provides the Shapley value ϕ for feature i:

ϕi(v) =
∑

S⊂N\i

|S|!(n− |S| − 1)!

n!
(v(S ∪ i)− v(S)) (1)

where n = |N | is the total number of input features. This
is the weighted sum of marginal contribution of feature i
across all possible coalitions that do not contain the feature
i. Shapley values satisfy desirable axioms that make them
make a good choice for generating feature contributions.
We describe 3 of those axioms now-
Null : The null axioms states that if a feature that does not
change the output when added to any coalition, it will get a
Shapley value of zero.
Efficiency : The efficiency property states that the sum of
Shapley values is equal to the difference between the pre-
diction obtained by the grand coalition and empty coalition.
Symmetry: If two features behave in the same way across
all possible coalitions, then their Shapley values will end up
being the same.

The grand coalition is usually the entire instance to be ex-
plained, while the null coalition is an average instance or
an instance composed entirely of default replacements for
missing values for each feature(since they are all out of the
coalition in the null coalition). The Shapley values are then
used to decompose the difference between an instance’s
prediction and the average prediction of the model to the
individual features of the instance through the efficiency
axiom. Since we iterate over all possible subsets of features
that do not contain the ith feature, computing Shapley values
in exponential in the number of features. This is particularly
problematic in case of images, where we have large numbers
of pixels as input features. For partial coalitions, we need
to compute the model output given only the members in the
coalition, which results in partially formed instances. This
is usually done by either marginalizing (Datta et al., 2016)
or conditioning (Lundberg & Lee, 2017). However, both
of these techniques are known to have issues (Kumar et al.,
2020). Further, this vanilla Shapley value-based decomposi-
tion explains away the difference between the prediction of
the input instance and the model prediction on an ”average”
instance. This average model prediction does not always cor-
respond to a sensible input (Sundararajan & Najmi, 2020).

It has also been shown that standard feature contributions in
isolation do not help humans reason as well as contrastive
explanations do (De Graaf & Malle, 2017). We aim to
overcome these issues through our modified contrastive for-
mulation of Shapley values using high-level interpretable
input features as players.

4. Methodology
4.1. Generating Counterfactual Images

We use a Shift Predictor model to obtain counterfactual im-
ages according to our needs. A shift predictor model is an
MLP model that takes latent variable of an image from a
generative model G and generates the latent variable for its
counterfactual based on the attributes produced by a classi-
fier. For a generative model G : Rd → Rn having a latent
space with dimension d and a classifier C : Rn → Rm

that predicts m attributes, we define our shift predictor as
M(z, ŷ) : Rd × Rm → Rd, where z ∈ Rd is the latent
variable for the input image and ŷ denotes the attributes for
the intended counterfactuals. During training, shift predictor
learns the directions in the latent space of G that correspond
to changes in the attributes predicted by the classifier. With-
out need for any manual labeling, the training procedure
only requires the latent variables of images from G to input
the shift predictor and supervise it with the labels generated
by the classifier.

During training, shift predictor learns to produce a coun-
terfactual latent variable that satisfies any combination of
attributes defined by ŷ. In other words, if the classifier
predicts a set of attributes A = {A1, A2, ..., Am}, shift pre-
dictor provides a counterfactual latent variable compatible
with any selected subset of attributes Ā:

ẑ = M(z, {Ai = âi |Ai ∈ Ā}). (2)

Under proper training, the shift predictor is an approxima-
tion of latent variable distribution conditioned by the subset
of attributes Ā :

ẑ ∼ P (z|{Ai = âi |Ai ∈ Ā}), Ā ⊆ A. (3)

The loss function in the training process pursues two objec-
tives: 1) minimizing the error in prediction of attributes Ā
for the counterfactual image, 2) assuring a level of faithful-
ness of the generated counterfactual to the original image.
The attribute loss La is defined as a cross entropy between
the conditioned attributes and the attributes predicted by the
classifier. During training, the conditioned attributes Ā are
distinguished from unset attributes so the loss will be only
calculated for them. On the other hand, the faithfulness loss
Lf is calculated as the normal distance between the original
latent variables and their counterfactuals. The overall loss
in the training process is defined as a combination of these
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two losses with a faithfulness factor γ which defines a bal-
ance between attribute accuracy of counterfactuals and their
faithfulness to the original input:

L = La + γLf =
∑
Ai∈Ā

−ŷilog(yi) + γ||ẑ − z|| (4)

4.2. Contrastive Explanations Using Shapley Values

The efficiency property of Shapley values allows us to de-
compose the score difference between the game played
by the grand coalition and the empty coalition among all
the players. We define players in terms of interpretable
attributes of the images. In images of human faces, these at-
tributes could be attributes like hair, makeup, etc. We work
in this interpretable space instead of pixel-level features. We
define the empty coalition as the set of all zeros for these at-
tributes. It corresponds to their natural or default values that
they take on in the image. However, we can define the grand
coalition by either increasing the attributes or decreasing
them. We use the shift predictor described above to obtain
images corresponding to this increase or decrease in the
specific attribute of the image. For instance, we can define
the grand coalition to be +1 for all interpretable features,
which would correspond to an image that has been forced to
increase the presence of all attributes in itself. This provides
us with 2 images to compare - the original image correspond-
ing to the empty coalition and the counterfactual image with
a set of increased or reduced attributes(+1 ↑,−1 ↓). We
use Shapley values to decompose the difference in predic-
tion obtained for these two images into their interpretable
features. Our shift predictor can take any arbitrary vector
specifying the direction of change of attributes and return a
counterfactual image. This overcomes issues found in other
traditional Shapley value-based frameworks of missing data
for members out of coalition. For partial coalitions, we set
the values for members out of the coalition to be 0. This
instructs the shift predictor to not make any changes to that
attribute. Hence, we directly compute value functions for
any coalition using this pipeline. In this setup, we gain a
contrastive notion and no longer compare to an ”average”
instance. Instead, we have two specific images- the original
and its counterfactual, and we explain the difference in their
predictions Shapley values.

5. Experiments
We run experiments to explain a classifier that is trained
on face images. We have annotations for the set of inter-
pretable attributes A that we will use to explain the model’s
behavior. We train a multi-task classifier built on top of a
pretrained VGG cite backbone to predict the set of inter-
pretable attributes A for new unseen images. The CelebA
dataset(Liu et al., 2015) is used as the training set and pro-
vides 39 binary attributes, including attractiveness which

Table 1. Shapley Value based contributions explaining the dif-
ference in predictions between each pair of original and coun-
terfactual images from Figure 1. Each element is of the form
(↑ / ↓, attribution) where the ↑/ ↓ indicates whether that specific
feature in the original image was increased or decreased to produce
the counterfactual.

IMAGE YOUNG
HEAVY

MAKEUP
BLOND
HAIR

BALD MALE

1 ↓ -0.28 ↓ -0.02 ↓ -0.03 ↑ -0.34 ↑ 0.07
2 ↓ -0.20 ↓ -0.07 ↓ -0.03 ↑ -0.23 ↓ -0.04
3 ↑ 0.23 ↑ 0.37 ↑ 0.15 ↓ 0.10 ↑ -0.05
4 ↑ 0.16 ↑ 0.18 ↑ 0.13 ↓ 0.23 ↓ 0.09

we use as the target output Y for any black-box classifier of
choice. As the set of interpretable explanatory attributes(A),
we choose five other labels: blonde hair, heavy makeup,
baldness, youngness, and maleness. We model attractive-
ness as the positive class (y = 1.0) and unattractiveness as
the negative class (ŷ = 0.0) for the classifier to predict. The
black-box classifier is built on a pretrained VGG backbone.
We train our shift predictor model, as described earlier, with
a faithfulness γ value of 0.09. We pass the images through
the multi-task classifier to obtain the attribute values and
through the black-box classifier to obtain the target label.
We sample images randomly from the StyleGan2 Genera-
tive Model and pass them through the black-box model. For
every instance, we generate a counterfactual image through
the shift predictor by defining our grand coalition in terms of
increase or decrease of feature attributes. We obtain Shapley
values-based contributions that explain away the difference
in prediction between the original image(empty coalition)
and the counterfactual image(grand coalition). Both the
original and contrastive images along with the Shapley val-
ues of the interpretable features are given as explanations.
We report the Shapley value-based attributions for images
in Figure 1 in Table 1. The original images have their de-
fault attributes, while counterfactual images are generated
through modifying the interpretable images as shown by
↑ and ↓ signs for the increase and decrease of attributes,
respectively, as listed in Table 1. We can observe that for the
original image O1, we generate the counterfactual image
Ci by increasing maleness and baldness while decreasing
youngness, heavy makeup, and blond hair. When this is
done, the attractiveness score drops from 0.73 to 0.12. This
drop is mainly due to increasing baldness which accounts for
0.34 of the 0.61 difference in attractiveness, while decreas-
ing youngness(increasing age) contributed to 0.28 of the
total drop. Similarly, we can look at other pairs of original
images and counterfactuals, in conjunction with the assigned
Shapley attributions to understand model behaviour.

6. Future Work
As next steps, we want to make the shift predictor causal by
incorporating causal graphs and also work towards a compu-
tationally efficient algorithm to compute these explanations.
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