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Abstract
This paper introduces RISE, a robust
individualized decision learning framework
with sensitive variables, where sensitive variables
are collectible data and important to the inter-
vention decision, but their inclusion in decision
making is prohibited due to reasons such as
delayed availability or fairness concerns. The
convention is to ignore these sensitive variables
in learning decision rules, leading to significant
uncertainty and bias. To address this, we propose
a decision learning framework to incorporate
sensitive variables during offline training but
do not include them in the input of the learned
decision rule during model deployment. Specifi-
cally, from a causal perspective, the proposed
framework intends to improve the worst-case
outcomes of individuals caused by sensitive
variables that are unavailable at the time of
decision. Unlike most existing literature that uses
mean-optimal objectives, we propose a robust
learning framework via finding a newly defined
quantile- or infimum-optimal decision rule. The
reliable performance of the proposed method is
demonstrated through synthetic experiments and
three real-data applications.

1. Introduction
Recently, there has been a widespread interest in develop-
ing methodology for individualized decision rules (IDRs)
based on observational data. When deriving IDRs, some
collectible data are important to the intervention decision,
while their inclusion in decision making is prohibited due
to reasons such as delayed availability or fairness concerns.
For example, sensitive characteristics of subjects regarding
their income, sex, race and ethnicity may not be appropriate
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to be used directly for decision making due to fairness con-
cerns. In the medical field especially for patients in severe
life-threatening conditions such as sepsis, timely bedside
intervention decisions have to be made before lab measure-
ments are ordered, assayed and returned to the attending
physicians. However, due to the delayed availability of lab
results, most of the decisions are made with great uncer-
tainty and bias due to partial information at hand. We define
sensitive variables as variables whose inclusion into deci-
sion rules is prohibited. The formal definition of sensitive
variables will be given in Section 2.

In this work, we propose RISE (Robust Individualized deci-
sion learning with SEnsitive variables), a robust IDR frame-
work to improve the outcome of individuals when there
are informative yet sensitive variables that are either not
available or prohibited from using during IDR deployment.
The main question of interest is whether the learned IDR
could yield similar outcomes across all realizations of the
sensitive variables. To achieve this, we propose to estimate
the optimal IDR by optimizing a quantile- or infimum-based
objective, respectively, for continuous or discrete sensitive
variables. Our idea falls along the lines of work that con-
siders algorithmic fairness (Dwork et al., 2012) while ex-
tending it to the setting of causal inference (Rubin, 2005) in
the sense that decisions are driven by causality rather than a
general utility function. We show in our empirical analyses
that this leads to fairer and safer real-life decisions with
little sacrifice of the overall performance. This optimiza-
tion problem is then shown to be equivalent to a weighted
classification problem where most existing statistical and
machine learning classifiers can be readily applied.

Assuming that a large outcome value is preferable, opti-
mal IDRs are traditionally derived through maximizing the
mean outcome of the sample population. In this paper, we
are interested in a specific yet broadly applicable setting
of learning that involves sensitive variables. We consider
offline learning where sensitive variables are collected and
can be used in training the IDRs, but they cannot be used
as input in the resulting IDRs. This is a setting commonly
considered in the fairness and privacy-related literature for
classification (e.g., Kamiran & Calders (2012)), but not
from a causal standpoint. We defer a detailed discussion of
related work to Appendix A. When there exist important
variables that are simply left out from training, the estimated
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IDR will be biased. This bias can be removed if all impor-
tant variables are used during training, which we will show
in Section 2.1 a mean-optimal approach. The optimal ac-
tion maximizes the mean outcome where the mean is taken
over the sensitive variables, conditioning on other variables.
This method, however, has no control of the disparity in
sensitive variables. Subjects with different sensitive val-
ues may report large outcome differences, hence unfairly
or unsafely treated. Therefore, objective functions with
robustness guarantees for sensitive variables are preferred,
since they offer protection to subjects in the lower tail of the
outcome distribution with regards to the sensitive values.

For illustration, we consider a toy example with binary ac-
tions, A ∈ {−1, 1}. We note that the decision can only
be made based on the variable X whereas S is a sensitive
variable. The setup is shown in Table 1 and partial simula-
tion results are shown in Table 2. The details can be found
in Section 3.1 under Example 1. We consider vulnerable
subjects as those with low outcome values, as highlighted in
red in Table 1 (A full definition will be given in Section 2.2).
For X ≤ 0.5, the traditional mean-optimal rule assigns ac-
tion A = 1 as it achieves the largest average reward across
S = 0 and S = 1. However, this action results in great
harm for subjects with S = 1 as they could get the worst
expected outcome of 0. On the contrary, the proposed RISE
improves the worst-case outcome by assigning A = −1,
protecting the vulnerable subjects. Likewise, for X > 0.5,
the mean-optimal rule assigns A = −1 while the proposed
rule assigns A = 1 protecting those with S = 0 that could
have experienced an outcome of 5. Compared to the mean-
optimal rule, the proposed RISE achieves a much larger
reward among vulnerable subjects while maintaining a com-
parable overall expected reward. The worst-case outcomes
of the rule by the proposed RISE are colored in blue.

Table 1: Toy example setup.

X ≤ 0.5 X > 0.5

E(Y |X,S,A) S = 0 S = 1 S = 0 S = 1

A = −1 11 13 5 27
A = 1 30 0 15 13

Table 2: Toy example results.

Average reward

Overall Vulnerable

Mean-optimal rule 14.4 7.1
RISE 13 14

Main contributions. Methodology-wise, 1) we propose
a novel framework, RISE, to handle sensitive variables in
causality-driven decision making. Robustness is introduced
to improve the worst-case outcome caused by sensitive vari-
ables, and as a result, it reduces the outcome variation across

subjects. The latter is directly associated with fairness and
safety in decision making. To the best of our knowledge, we
are among the first to propose a robust-type fairness crite-
rion under causal inference. 2) We introduce a classification-
based optimization framework that can easily leverage most
existing classification tools catered to different functional
classes, including state-of-the-art random forest, boosting,
or neural network models. Application-wise, 3) the consider-
ation of sensitive variables in decision learning is important
to applications in policy, education, healthcare, etc. Specif-
ically, we illustrate the application of RISE using three
real-world examples from fairness and safety perspectives
where robust decision rules are needed, across which we
have observed robust performance of the proposed approach.
From a fairness perspective, we consider a job training pro-
gram where age is considered as a sensitive variable. From
a safety perspective, we consider two applications to health-
care where lab measurements are considered as sensitive
variables.

2. Robust Decision Learning Framework with
Sensitive Variables

2.1. Preliminaries

Notation. We let random variables be represented by
upper-case letters, and their realizations be represented by
lower-case letters. Suppose there are n independent subjects
sampled from a given population. For subject i, let Ai ∈
{−1, 1} denote a binary treatment assignment and Yi denote
the corresponding outcome. Without loss of generality,
we assume a larger value of outcome is desirable. Under
the potential outcomes framework (Rubin, 1978; Splawa-
Neyman et al., 1990), let Yi(−1) be the potential outcome
had the subject been assigned to control and Yi(1) be the
potential outcome had the subject been assigned to treatment.
Let Xi ∈ X be the feature vector and, for now, Si be a
single sensitive variable. Extension to multiple sensitive
variables is presented in Section 2.4. We consider S ∈ S
where S = {1, . . . ,K} if S is discrete and S = R if S is
continuous.

Definition of sensitive variables. We define sensitive
variables that are important to the intervention decision, but
their inclusion in decision making is prohibited. Formally,
consider variables X and S that are both available during
model training and are both determinants of conditional
average treatment effect (Rubin, 1974). While X and S may
be both involved in training, the derived decision rule d(·)
precludes the input of S due to sensitive concerns. Hence,
the derived IDR is only a function with the form d(X) :
X → A. Following the above definition, we consider an
offline learning framework where sensitive variables are
collected and can be used in obtaining the IDRs, but they
cannot be used in the resulting IDRs. We defer the required
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causal assumptions and related discussion to Appendix B.

Naive approaches that omit sensitive variables. When
S is not available for future deployment, a naive approach
is to maximize EX{E(Y |X,A = d(X))} over d using
(X,A, Y ) during training procedure. This approach intro-
duces bias in the estimation of potential outcomes and leads
to a suboptimal IDR due to the unmeasured confounder S.

Mean-optimal approaches that use sensitive variables.
It is thus important that one includes S into the training
procedure. For example, if we consider the value function
framework (i.e., expected outcome) used by most existing
works such as Manski (2004); Qian & Murphy (2011), we
can show that

E{Y (d)} = EX,S

[
E(Y (d)|X,S)

]
= EX

[
ES|X{E(Y (d)|X,S)}

]
= EX

[
ES|X{E(Y |X,S,A = d(X))}

]
(1)

̸= EX

[
E(Y |X,A = d(X))

]
,

where the third equality in (1) holds by Assumption 1 and
the last inequality also indicates the naive approaches with-
out using S will in general fail. Then one valid approach
is to maximize EX

[
ES|X{E(Y |X,S,A = d(X))}

]
over

d using (X,S,A, Y ). The optimal IDR under this criterion
is, for every X ∈ X, d̃(X) ∈ sign(ES|X{E(Y |X,S,A =
1)} − ES|X{E(Y |X,S,A = −1)}), which guarantees to
find the treatment that maximizes the conditional expected
outcome given each X by averaging out the effect of the
sensitive variable S. The mean-optimal approaches, how-
ever, fail to control the disparities across realizations of
the sensitive variables due to the integration over S, which
may lead to unsatisfactory decisions to certain subgroups,
as illustrated in the toy example in Section 1.

2.2. Robust Optimality with Sensitive Variables

Driven by the limitation of existing approaches, our goal is
to derive a robust decision rule that maximizes the worst-
case scenarios of subjects when some sensitive informa-
tion is not available at the time of deploying the decision
rule. Specifically, our robust decision learning framework
draws decisions based on individuals’ available character-
istics summarized in the vector X without the sensitive
variable S, while improving the worst-case outcome of sub-
jects in terms of the sensitive variable in the population.
Formally, given a collection D of all treatment decision
rules depending only on X , the proposed RISE approach
estimates the following IDR, which is defined as

d∗ ∈ argmaxd∈DEX

[
GS|X{E(Y |X,S,A = d(X))}

]
,

(2)

where GS|X(·) could be chosen as some risk measure for
evaluating E(Y |X,S,A = d(X)) for each S ∈ S. Exam-
ples include variance, conditional value at risk, quantiles,

etc. In this paper, we consider GS|X as the conditional
quantiles (for a continuous S) or the infimum (for a discrete
S) over S.

Specifically, for a discrete S, GS|X is consider as an in-
fimum operator of E(Y |X,S,A = d(X)) over S. We
thus aim to find d∗ ∈ argmaxDEX

[
infs∈S{E(Y |X,S =

s,A = d(X))}
]
, where inf is the infimum taken with

respect to E(Y |X, s,A = d(X)) over s ∈ S. This
implies that for a given X , d∗(X) assigns the treat-
ment that yields the best worst-case scenario among
all possible values of S for every X ∈ X, or equiv-
alently, d∗(X) ∈ sign(infs∈S{E(Y |X,S = s,A =
1) − infs∈S{E(Y |X,S = s,A = −1)}). For a contin-
uous S, we consider GS|X{E(Y |X,S,A = d(X))} as
Qτ

S|X{E(Y |X,S,A = d(X))}, which is the τ -th quantile
of {E(Y |X,S,A = d(X))} and τ ∈ (0, 1) is the quan-
tile level of interest. Specifically, Qτ

S|X{E(Y |X,S,A =

d(X))} = inf{t : F (t) ≥ τ} with F denoting the condi-
tional distribution function of E(Y |X,S,A = d(X)) given
X and d. Note the randomness behind E(Y |X,S,A =
d(X)) given X and d is fully determined by the sensi-
tive variable S. Then optimal IDR under this criterion
is defined as d∗ ∈ argmaxDEX

[
Qτ

S|X{E(Y |X,S,A =

d(X))}
]
. This implies that for a given X , d∗(X) as-

signs a treatment that yields the largest τ -th quantile of
the outcome over the distribution related to S, or equiv-
alently, d∗(X) ∈ sign({Qτ

S|X{E(Y |X,S,A = 1)} −
Qτ

S|X{E(Y |X,S,A = −1)}). We let τ = 0.25 throughout
and suppress τ for simplicity. Results on varying the value
of τ is provided in Appendix; see Section 3.1 for details.

Identifying vulnerable subjects. Our RISE
framework provides a natural way to define vulner-
able groups. Specifically, for a discrete S, if
infS{E(Y |X,S,A = 1)} > infS{E(Y |X,S,A = 0)},
then arg infS{E(Y |X,S,A = 0)} is vulnerable given
X , otherwise arg infS{E(Y |X,S,A = 1)} is vulnera-
ble. In other words, the vulnerable subjects are those
in the worst-off group that needs protection. Similarly,
for a continuous S, if QS{E(Y |X,S,A = 1)} >
QS{E(Y |X,S,A = 0)}, then the set {S : E(Y |X,S,A =
0) ≤ QS{E(Y |X,S,A = 0)}} defines the vulnera-
ble subjects given X , otherwise this group is defined as
{S : E(Y |X,S,A = 1) ≤ QS{E(Y |X,S,A = 1)}}.

2.3. Estimation and Algorithm

Here we provide a transformation of the proposed RISE
from an optimization problem to a weighted classification
problem. There are several advantages to this conversion:
1) The optimization problem defined in (2) involves a non-
smooth and nonconvex objective function that could lead
to computational challenges. 2) With multiple powerful
statistical and machine learning toolbox to choose from, a
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classification problem can be more readily solved in prac-
tice. Hyperparameter tuning and model selection could be
conducted to further boost performance. 3) Compared to a
direct optimization of (2), a classification-based optimizer
allows the use of off-the-shelf software packages that can
be tailored to different functional classes or incorporate
different properties such as model sparsity.

With Proposition 1 and Proposition 2, we have transformed
the optimization problem (2) into a weighted classification
problem (4) where for subject i with features xi, the true
label is sgn{g1(xi) − g2(xi)} and the sample weight is
|g1(xi)−g2(xi)|. The estimated optimal decision rule by (4)
is then given by d̂(x) = sgn{f̂(x)}, where f(x) is a smooth
function. Proposition 1 and Proposition 2 along with their
proofs are presented in Appendix C. The detailed description
of the algorithm as well as modeling and hyperparameter
tuning via cross-validations can be found in Appendix D.

2.4. Extension to multiple discrete sensitive variables

For multiple discrete sensitive variables, similar estima-
tion procedure can be conducted as outlined in Sec-
tion 2.3. Suppose there are L discrete sensitive vari-
ables, i.e., S = {S1, S2, . . . , SL}. The inner expectation
E(Y |X,S1, . . . , SL, A) can be obtained with a twin model
of Y on X and all S for each treatment level. The infimum
over S is obtained by finding the minimum iterating space
of possible parameter values for each sensitive variable.
See Section 3.2 for an example of using multiple discrete
sensitive variables.

3. Numerical Studies
In this section, we perform extensive numerical experiments
to investigate the merit of robustness of the proposed frame-
work via simulations and three real-data applications. For
comparison, we consider the naive and mean-optimal ap-
proaches described in Section 2.1. The details can be found
in Appendix E. The numerical results demonstrate that the
proposed rules achieve a robust objective with sensitive vari-
ables unavailable at the time of decision while maintaining
comparable mean outcomes.

Evaluation metrics. 1) Objective: the quantile objective is
estimated and reported for a continuous S and the infimum
objective is for a discrete S. The objective, when τ < 0.5,
(here τ = 0.25) represents the value of the “low performers”
among all possible value of S under a given d. 2) Value:
the value function used by the most existing methods. It
represents the “average performers”. We report the met-
rics among all subjects and among the potential vulnerable
subgroup, respectively.

3.1. Simulation Studies

A detailed description of simulation setups and results can
be found in Appendix F. The proposed RISE achieves the
largest objectives and improves the value among vulnerable
subjects, while maintaining comparative overall values. As
demonstrated in the toy example introduced in Section 1,
we expect that RISE helps improve the value among the
vulnerable subjects while maintaining a comparable overall
value. As for the objective, intuitively, the proposed rule is
expected to have a larger objective. We also consider for
a continuous S different quantile criteria τ = 0.1 and 0.5,
respectively, to test the robustness of the proposed RISE.
Results show that when τ is small, there is more strength
in the proposed method, as the algorithm aims to improve
the worst-outcome scenarios. The proposed RISE has the
largest gain in objective and value among vulnerable sub-
jects when τ is 0.1, and has similar performance as the
compared approaches when τ is 0.5. Besides, we consider a
scenario where S is not involved in the data generation of Y ,
i.e., Assumption 1c is simplified as {Y (−1), Y (1)} ⊥ A|X .
The objective and value function are similar across all com-
pared approaches, which indicates the robustness of RISE.

3.2. Real-data Applications

We present three real-data examples to showcase the robust
performance of RISE. These applications consider either
fairness or safety in the context of policy (LaLonde, 1986)
and healthcare (Hammer et al., 1996; Seymour et al., 2016)
where sensitive variables exist. A detailed description of
datasets and results can be found in Appendix G. As ex-
pected, RISE is shown to have the largest objective as well
as value among vulnerable subjects. The patterns are similar
to that in the synthetic experiments in Section 3.1. We pro-
vide visualizations by Shapley additive explanations (SHAP)
(Lundberg & Lee, 2017) for RISE and the mean-optimal
rule, respectively, in Appendix G about feature importance
in the final classification models to help interpret important
covariates in making the decisions. Overall, the direction of
correlations is similar for RISE and the mean-optimal rule,
but their ranking of feature importance may be different.

4. Discussion
We have proposed RISE, a robust decision learning frame-
work with a novel quantile-, or infimum-optimal treatment
objective intended to improve the worst-case scenarios of
individuals when decisions with uncertainty are needed to
be made with sensitive yet important information unavail-
able. Our approach can be applied to a board range of
applications, including but not limited to policy, education,
healthcare, etc.
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A. Closely Related Work
Our work focuses on individualized decision rules, which aim at assigning treatment decision based on subject characteristics.
Typical model-based methods for deriving IDRs include Q-learning such as Watkins & Dayan (1992); Murphy (2003);
Moodie et al. (2007); Chakraborty et al. (2010); Goldberg & Kosorok (2012); Song et al. (2015) and A-learning such as
Robins et al. (2000); Murphy (2005) where a model of responses is imposed and the optimal decision rule is obtained by
optimizing value function derived from the model. On the other hand, model-free methods such as Robins et al. (2008);
Orellana et al. (2010a;b); Zhang et al. (2012); Zhao et al. (2012; 2015) assign values to actions simply through trial and error
without pre-specifying a model. Besides, contextual bandit methods (see Bietti et al. (2021) and references therein) test out
different actions and automatically learn which one has the most rewarding outcome for a given situation. Other methods
include Robins (2004); Moodie et al. (2009); Cai et al. (2011); Henderson et al. (2010); Thall et al. (2002); Imai & Ratkovic
(2013); Huang et al. (2015); Tao & Wang (2017). See Chakraborty et al. (2010); Chakraborty & Moodie (2013); Laber et al.
(2014); Kosorok & Moodie (2015) and references therein for a comprehensive review. Beyond the field of causal inference,
fairness and safety, and robustness are two areas of research that extend well beyond the learning of IDRs. In the following,
we provide a review on both, with focus given to work related to causal inference and IDRs.

Fairness and safety in IDRs. The consideration of fairness and safety in machine learning has seen an explosion of interest
in the past few years. We refer to Dwork et al. (2012); Varshney (2016); Barocas et al. (2017); Nabi & Shpitser (2018);
Hashimoto et al. (2018); Chouldechova & Roth (2020); Mehrabi et al. (2021); Pessach & Shmueli (2022) and references
therein for a review of this topic in classification and regression problems. In these work, sensitive variables are also referred
to as sensitive or protected attributes. We extend the definition of sensitive variables to include delayed information that is
not available at deployment as it is also suitable for this framework.

Among earlier work, preprocessing approaches (Kamiran & Calders, 2012; Feldman et al., 2015; Creager et al., 2019;
Sattigeri et al., 2019) and inprocess training approaches (Beutel et al., 2017; Hashimoto et al., 2018; Lahoti et al., 2020)
consider disentangling the input X from a known or unknown sensitive variable S so that the transformed X does not
contain any information that can be used to trace back to S. Due to the causal nature of IDRs, effect of IDRs cannot be
estimated consistently when an informative S is left out and the resulting rule is sub-optimal. This follows from the classic
argument that any unmeasured confounding (i.e., S), if not accounted for, would lead to bias. Similar issues persist in
contextual bandits (Joseph et al., 2016; Patil et al., 2020). Inside the causal framework, Zhang & Bareinboim (2018); Nabi
et al. (2019) extend fairness from prediction to policy learning using causal graphical models by incorporating fairness
constraints. Chen et al. (2022) considers counterfactual fairness that seeks to achieve conditional independence of the
decisions via data preprocessing. Despite earlier efforts in bringing fairness into the causal framework, most of these
approaches only ensure mean zero disparity in S but do not have robustness guarantees in the sense that the variance of the
disparity in S is not controlled. Besides, most examples consider a single categorical sensitive variable, but not multiple or
continuous ones.

Robustness in IDRs. Recently the statistical literature has witnessed a growing interest in developing robust methods
for estimating IDRs. They introduce robustness into the objective function by using quantile-optimal treatment regimes
or mean-optimal treatment regimes under certain constraints to improve the gain of individuals at the lower tail of the
reward spectrum (Wang et al., 2018a;b; Qi et al., 2022; 2019; Fang et al., 2022). Robustness, in their sense, pertains to the
outcome distribution subject to sampling error. When sensitive variables are present, we consider instead the robustness of
the outcome distribution subject to the uncertainty due to sensitive variables, providing a more targeted way of ensuring
robustness, which is directly related to fairness and safety. Compared to algorithms based on explicit fairness constraints
(for example Zafar et al. (2017); Zhang et al. (2018) in classification and Zhang & Bareinboim (2018); Chen et al. (2022)
in causal inference) that seek to remove the disparity across different values of S, our method reduces the variance of
disparity across S. In addition, constraint-based approaches typically require specialized optimization procedures whereas
our approach presents an elegant and systematic way for optimization. To our knowledge, we are the first few to consider
decision fairness via a robust objective under the causal framework.

B. Causal Assumptions
Assumption 1. Assume the following conditions hold:

(1a) Consistency: Y = Y (−1)1(A = −1) + Y (1)1(A = 1).
(1b) Positivity: 0 < Pr(A = 1|X,S) < 1.
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(1c) Unconfoundedness: {Y (−1), Y (1)} ⊥ A|{X,S} and {Y (−1), Y (1)} ̸⊥ A|X .

Assumption 1a is the standard consistency assumption in causal inference and Assumption 1b states that every subject
has a nonzero probability of getting the treatment. Assumption 1c states that given X and S, the potential outcomes are
independent of the treatment assignments. Besides, the unconfoundedness does not hold when only X is conditional,
signifying the importance of S. Under causal settings, Assumption 1c ensures that treatment effects cannot be non-
parametrically identifiable without S (See Neyman (1923); Rubin (1974); Holland (1986); Imbens & Angrist (1994); Pearl
(2009) and references therein). Approaches such as disentanglement of X from S under supervised learning settings
mentioned in Appendix A will introduce bias towards estimating the IDR.

C. Propositions and Proofs
Proposition 1. Maximizing the objective function in (2) is equivalent to maximizing

EX

{
1(d(X) = 1)[GS|X{E(Y |X,S,A = 1)} −GS|X{E(Y |X,S,A = −1)}]

}
.

With Proposition 1 and a proper estimator of the outcome model E(Y |X,S,A) using our training data Dn =
{Xi, Si, Ai, Yi}ni=1, we replace the expectation of Yi by its estimate Ŷi and solve the following problem.

argmaxd∈Dn
−1

∑n
i=1[1(d(xi) = 1){g1(xi)− g2(xi)}], (3)

where g1(xi) = Gs|x{Ŷi(xi, s, ai = 1)} and g2(xi) = Gs|x{Ŷi(xi, s, ai = −1)}. Note that g1(xi) − g2(xi) may not be
positive, which makes Problem (3) difficult to solve. We have the following key proposition 2 to address this issue and
transform it into a classification problem.
Proposition 2. Let f(x) to be a smooth function. Maximizing the empirical objective in (3) is equivalent to a weighted
classification of minimizing

n−1
∑n

i=1 1[sgn{g1(xi)− g2(xi)} · f(xi) < 0] · |g1(xi)− g2(xi)|, (4)

with features xi, the true label sgn{g1(xi)− g2(xi)}, and the sample weight |g1(xi)− g2(xi)|, for subject i, i = 1, . . . , n.

Proof of Proposition 1. We observe that to maximize the objective function in (2) is equivalent to maximizing

EX

[
GS|X{E(Y |X,S,A = d(X))}|X

]
= EX

[
GS|X{E(Y |X,S,A = 1)}1(d(X) = 1)

+GS|X{E(Y |X,S,A = −1)1(d(X) = −1)}
]

= EX

{
1(d(X) = 1)[GS|X{E(Y |X,S,A = 1)} −GS|X{E(Y |X,S,A = −1)}]

+GS|X{E(Y |X,S,A = −1)}
}

∝ EX

{
1(d(X) = 1)[GS|X{E(Y |X,S,A = 1)} −GS|X{E(Y |X,S,A = −1)}]

}
.

Proof of Proposition 2. Let d(x) = sgn{f(x)}, by this transformation, we consider the following objective on a smooth
function f(x),

argmaxd∈D
1
n

∑n
i=1

{
1(d(xi) = 1)[g1(xi)− g2(xi)]

}
= argmaxf

1
n

∑n
i=1 1[sgn{f(xi)} = 1] · [g1(xi)− g2(xi)]

= argminf
1
n

∑n
i=1 1{1 · f(xi) < 0} · [g1(xi)− g2(xi)]

= argminf
1
n

∑n
i=1 1[sgn{g1(xi)− g2(xi)} · f(xi) < 0] · |g1(xi)− g2(xi)|.

The sign of the estimated f above is a d to (3).

Hence, the proposed classification-based objective is to minimize
1
n

∑n
i=1 1[sgn{g1(xi)− g2(xi)} · f(xi) < 0] · |g1(xi)− g2(xi)|.

To this point, we have transformed the optimization problem (2) into a weighted classification problem where for subject i
with features xi, the true label is sgn{g1(xi)− g2(xi)} and the sample weight is |g1(xi)− g2(xi)|.
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D. Detailed Description on the Algorithm
Algorithm 1 provides an algorithmic overview. The inner expectation E(Y |X,S,A) can be modeled as Ŷ (X,S,A) using
a twin model separated by the treatment and control groups. For a continuous S, we propose to estimate G(X,A) =
QS|X,A{E(Y |X,S,A)} via a quantile regression of Ŷ on X but without S. For a discrete S, we propose to obtain an
estimate of G(X,A) = infS{E(Y |X,S,A)} by finding the minimum among {E(Y |X,S = 1, A), . . . , E(Y |X,S =
K,A)}. The estimated decision rule can then be obtained from the weighted classification. In our implementation, neural
networks are used to fit models in the training data sets. A Python package RISE based on neural networks is built. Note
that the model choices are flexible.

Algorithm 1 RISE (Robust individualized decision learning with sensitive variables)
Input Training data Dn = {Yi, Ai, Xi, Si}ni=1

Output Estimated decision rule d̂

1: Ŷi(xi, si, ai)←Model E(Y |X,S,A = a) using Dn with a = 1 and a = −1, respectively.
2: if S is continuous then
3: g1(xi)←Model QS|X,A{E(Y |X,S,A = a)} via quantile regressions of Ŷi(xi, si, ai) on xi, for Dn with a = 1.
4: g2(xi)←Model QS|X,A{E(Y |X,S,A = a)} via quantile regressions of Ŷi(xi, si, ai) on xi, for Dn with a = −1.
5: if S is discrete then
6: g1(xi)← Compute infs∈S{Ŷi(xi, s, ai = 1)}, ∀i.
7: g2(xi)← Compute infs∈S{Ŷi(xi, s, ai = −1)}, ∀i.
8: d̂← Build a weighted classification model with features xi, label sgn{g1(xi)− g2(xi)}, and sample weight |g1(xi)− g2(xi)|.
9: Return d̂

D.1. Details on Modeling and Hyperparameter Tuning

In our implementation, neural networks with mean or quantile losses are used to fit the models with hyperparameters
tuned via a 5-fold cross validation in the training data sets. Specifically, implemented in TensorFlow (Abadi et al., 2016),
neural networks with mean squared loss is used to model E(Y |X,S,A) separated by the control arm and the treatment
arm, respectively. For continuous S, to model QS|X,A{E(Y |X,S,A)}, neural networks with quantile loss is used with a
prespecified τ , for the control arm and the treatment arm, respectively. In the final weighted classification model, neural
networks with cross-entropy loss is used. Note that the model choices here are flexible. One can perform model selection if
they would like to.

Hyperparameter tuning helps prevent overfitting and is essential in machine learning methods or other black-box algorithms
such as neural networks. In our implementation, the optimal hyperparameters are obtained via a 5-fold cross validation in
the training data sets. Specifically, we consider the number of hidden layers (1, 2, and 3 layers), the number of hidden units
in each layer (256, 512, and 1024 nodes), activation function (RELU, Sigmoid, and Tanh), optimizer (Adam, Nadam, and
Adadelta), dropout rate (0.1, 0.2, and 0.3), number of epochs (50, 100, and 200), and batch size (32, 64, and 128).

E. Compared Approaches
For comparison, we consider the naive and mean-optimal approaches described in Section 2.1, which correspond to different
choices of G(·) functions. The naive decision rule that simply disregard information of S, denoted as Base, can be formulated
in our optimization framework of (2) by letting G(X,A) = E(Y |X,A). The IDR can be estimated directly by fitting a
model of Y on X in each treatment arm. The resulting IDR is not sensitive variables-aware and is biased due to confounding,
as discussed. Another IDR that resembles traditional mean-optimal decision rules, denoted as Exp, can be formulated as
G(X,S,A) = E(Y |X,S,A). This can be obtained by training a classification model without S, i.e., only using X , after
obtaining an outcome model for the inner expectation E(Y |X,S,A). Note that this approach is not robust to extreme
behaviors in S. The modeling approaches described in Appendix D applies to here. We also remark that there is limited
work in the IDR-related literature that can be immediately compared with ours.

F. Simulation Details
For simulation, we consider training data and the testing data, respectively, with sample sizes of 5,000. All results are based
on 100 replications.
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Example 1. Here we provide the detail for the simulation of the motivating example introduced in Section 1. The outcome
is generated using the following model: Yi = 1(Xi > 0.5){5 + 101(Ai = 1) + 22Si − 241(Ai = 1)Si} + 1(Xi ≤
0.5){11 + 191(Ai = 1) + 2Si − 321(Ai = 1)Si} + ϵi, where the covariate Xi ∼ Unif [0, 1], treatment assignment
Ai ∼ Bernoulli(0.5), and the noise ϵi ∼ N(0, 1). For a discrete type S, the sensitive variable Si ∼ Bernoulli(0.5). For
a continuous type S, Si is generated from a mixture of beta distributions, Beta(4, 1) and Beta(1, 4), with equal mixing
proportions.

Example 2. We generate the outcome Y using the following model: Yi = {0.5 + 1(Ai = 1) + exp(Si)− 2.5Si1(Ai =
1)}{1 + Xi1 − Xi2 + X2

i3 + exp(Xi4)} + {1 + 21(Ai = 1) + 0.2 exp(Si) − 3.5Si1(Ai = 1)}{1 + 5Xi1 − 2Xi2 +
3Xi3 + 2 exp(Xi4)} + ϵ, where Xij ∼ U(0, 1), j = 1, . . . , 6, A satisfies log{P (Ai = 1|Xi)/P (A = 0|Xi)} =
−0.6(Si + Xi1 − Xi2 + Xi3 − Xi4 + Xi5 − Xi6), and ϵi ∼ N(0, 1). For a continuous type S, Si is generated from a
mixture of beta distributions, Beta(4, 1) and Beta(1, 4), with equal mixing proportions; for a discrete type S, we consider
a binary Si that satisfies log{P (Si = 1|Xi)/P (Si = 0|Xi)} = −2.5 + 0.8(Xi1 +Xi2 +Xi3 +Xi4 +Xi5 +Xi6).

Table 3 summarizes the performance of the proposed IDRs compared to the mean criterion for Example 1 and Example 2.
The proposed RISE achieves the largest objectives and improves the value among vulnerable subjects, while maintaining
comparative overall values. As demonstrated in the toy example introduced in Section 1, we expect that RISE helps improve
the value among the vulnerable subjects while maintaining a comparable overall value. As for the objective, intuitively,
the proposed rule is expected to have a larger objective. We also point out that there is no direct relationship between the
objective among all subjects versus the objective among vulnerable subjects. For example, using the toy example with setup
in Table 1, and limiting to subjects with X ≤ 0.5 only, S = 1 is vulnerable and is assigned A = −1 by the proposed RISE.
The objective among S = 1 is 13 but the objective among both S = 0 and S = 1 is 12 = (11+13)/2, which is smaller than
that among the vulnerable group. In other words, by protecting the vulnerable subjects, the proposed rule may lead to an
increase in the outcome of the vulnerable group, and the gain may result in a higher outcome than the overall mean outcome.

Table 3: Simulation results for Example 1 and Example 2. Standard error in parenthesis.

Example Type of S IDR Obj. (all) Obj. (vulnerable) Value (all) Value (vulnerable)

1

Disc.
Base 7.03 (0.03) 7.01 (0.04) 14.3 (0.05) 7.92 (0.06)
Exp 6.39 (0.03) 6.39 (0.04) 14.4 (0.05) 7.14 (0.06)

RISE 12.0 (0.01) 12.0 (0.01) 13.0 (0.01) 14.0 (0.01)

Cont.
Base 9.12 (0.03) 9.14 (0.04) 14.5 (0.08) 8.25 (0.11)
Exp 8.75 (0.03) 8.75 (0.04) 14.6 (0.08) 7.58 (0.06)

RISE 10.3 (0.02) 10.3 (0.03) 13.9 (0.04) 10.3 (0.06)

2

Disc.
Base 7.79 (0.02) 8.66 (0.03) 19.4 (0.04) 11.4 (0.06)
Exp 9.12 (0.03) 10.1 (0.03) 19.5 (0.04) 14.4 (0.05)

RISE 13.5 (0.01) 14.0 (0.01) 17.4 (0.02) 22.1 (0.02)

Cont.
Base 9.89 (0.02) 9.87 (0.03) 17.6 (0.02) 9.09 (0.04)
Exp 11.1 (0.02) 11.1 (0.02) 17.8 (0.02) 12.2 (0.04)

RISE 13.7 (0.02) 13.7 (0.02) 17.0 (0.01) 18.9 (0.03)

F.1. Additional Simulations

Different quantile criteria. For the quantile criteria, we also consider τ = 0.1 and 0.5, respectively. Table 4 presents the
simulation results for Example 2 with continuous S using 0.1 quantile criterion and 0.5 quantile criterion, respectively.

S as a noise variable. We generate the outcome Y using the following model where S is not involved: Y = 1(X1 ≤
0.5){8+121(A = 1)+16 exp(X2)−261(A = 1)X2}+1(X1 > 0.5){13+31(Ai = 1)+2 exp(X2)−81(A = 1)X2}+ϵ,
where Xj ∼ U(0, 1), j = 1, 2, A ∼ Bernoulli(0.5), and ϵ ∼ N(0, 1). For continuous S, S = expit{−2.5(1−X1−X2)};
for discrete S, we consider a binary S that satisfies log{P (S = 1|X)/P (S = 0|X)} = −2.5(1 − X1 − X2). Table 5
summarizes the performance of the proposed IDRs compared to the mean criterion for Example 2. The estimated objective
and value function are similar for the compared IDRs, which indicates the robustness of the proposed RISE.
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Table 4: Simulation results for Example 2 with continuous S using 0.1 quantile criterion and 0.5 quantile criterion,
respectively. Standard error in parenthesis.

Type of S τ IDR Obj. (all) Obj. (vulnerable) Value (all) Value (vulnerable)

Cont. 0.1
Base 7.93 (0.03) 7.92 (0.03) 17.7 (0.02) 8.64 (0.07)
Exp 8.88 (0.05) 8.85 (0.05) 17.8 (0.02) 10.6 (0.12)

RISE 13.8 (0.01) 13.7 (0.02) 16.9 (0.01) 20.9 (0.03)

Cont. 0.5
Base 17.3 (0.04) 17.2 (0.04) 17.7 (0.02) 23.8 (0.19)
Exp 17.2 (0.03) 17.4 (0.03) 17.8 (0.02) 22.1 (0.17)

RISE 17.4 (0.04) 17.4 (0.04) 17.8 (0.02) 24.0 (0.22)

Table 5: Simulation results for scenario when S is a noise variable. Vulnerable subjects cannot be defined as S is not
important in the example. The estimated objective and value function are similar for the compared IDRs, which indicates
the robustness of the proposed RISE.

Type of S IDR Obj. (all) Obj. (vulnerable) Value (all) Value (vulnerable)

Disc.
Base 27.5 (0.03) - 27.5 (0.06) -
Exp 27.5 (0.03) - 27.5 (0.06) -

RISE 27.5 (0.03) - 27.5 (0.06) -

Cont.
Base 27.2 (0.04) - 27.3 (0.07) -
Exp 27.2 (0.04) - 27.3 (0.07) -

RISE 27.2 (0.04) - 27.3 (0.07) -

G. Detailed Information and Results for Real-data Applications
For real-data applications, we consider a 80-20 split of the dataset into a training data and a testing data. Continuous
covariates are standardized before the estimation. All results are based on 100 replications.

Fairness in a job training program. To illustrate the implication of the proposed method from a fairness perspective, we
consider the National Supported Work (NSW) program (LaLonde, 1986) for improving personalized recommendations of a
job training program on increasing incomes. This program intended to provide a 6 to 18-month training for individuals
in face of economic and social problems such as former drug addicts and juvenile delinquents. The original experimental
dataset consists of 185 individuals who received the job training program (A = 1) and 260 individuals who did not (A = −1).
The baseline covariates are age, years of schooling, race (1 = African Americans or Hispanics, 0 = others), married (1 = yes,
0 = no), high school diploma (1 = yes, 0 = no), earning in 1974, and earning in 1975. The outcome variable is the earning in
1978. In the exploratory analysis using causal forest (Wager & Athey, 2018), we observe that age may play an important
role in the causal effect of the job training program on the long-term post-market earning. In the following data example
we use age as the sensitive variable S and other baseline covariates as X . The earnings in years 1974, 1975, and 1978 are
transformed by taking the logarithm of the earning plus one.

Improvement of HIV treatment. To illustrate the implication of the proposed method from a safety perspective when there
is delayed information, we consider the ACTG175 dataset among HIV positive patients (Hammer et al., 1996). The original
study considers a total of 2,139 patients who were randomly assigned into four treatment groups. In this data application, we
focus on finding the optimal IDRs between two treatments: zidovudine combined with didanosine (A = −1) and zidovudine
combined with zalcitabine (A = 1). The total number of patients receiving these two treatments is 1,046. The baseline
covariates we consider are age, weight, CD4 T-cell amount at baseline, hemophilia (1 = yes, 0 = no), homosexual activity (1
= yes, 0 = no), Karnofsky score, history of intravenous drug use (1 = yes, 0 = no), gender (1 = male, 0 = female), CD8 T-cell
amount at baseline, race (1 = non-Caucasian, 0 = Caucasian), number of days of previously received antiretroviral therapy,
use of zidovudine in the 30 days prior to treatment initiation (1 = yes, 0 = no), and symptomatic indicator (1 = symptomatic,
0 = asymptomatic). The outcome variable is the CD4 T-cell amount at 96± 5 weeks from the baseline. We consider CD8
T-cell amount at baseline as the sensitive variable. The response of CD8 T-cell among HIV positive patients has not been
fully understood (Boppana & Goepfert, 2018). Clinically, it is plausible that only CD4 is measured in clinical visits where
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treatments are based on, hence CD8 might not be measured and not used in decision making. As our exploratory analysis
using causal forest shows, CD8 T-cell amount may play an important part in the treatment effect of the outcome.

Safe resuscitation for patients with sepsis. For this application, we apply the proposed method to treating sepsis, a
life-threatening disease. This application intends to provide an example to apply our method with multiple categorical
sensitive variables in the scenario where there is missing yet important information at the time of decision making. We apply
the proposed method to a sepsis study from the University of Pittsburgh Medical Center (UPMC). The original study cohort
includes 30,687 patients with Sepsis-3 (Seymour et al., 2016) within 6 hours of hospital arrival from 14 UPMC hospitals
between 2013 and 2017. For our data analysis, we consider X to be baseline patient characteristics 4 hours before sepsis
onset, which includes patient demographics of age, gender (1 = male, 0 = female), race (1 = Caucasian, 0 = others), and
weight, and vital signs of usage of mechanical ventilation (1 = yes, 0 = no), respiratory rate, temperature, intravenous fluids
(1 = yes, 0 = no), Glasgow Coma Scale score, platelets, blood urea nitrogen, white blood cell counts, glucose, creatinine. We
consider two sensitive variables, lactate and Sequential Organ Failure Assessment (SOFA) score 4 hours before sepsis onset.
Note that their measurements are obtained retrospectively after treatment decisions have been made and are not available at
times of decision. According to the new definition of Sepsis-3 (Shankar-Hari et al., 2016), a serum lactate level >2 mmol/L
is considered to be in critical conditions and is highly likely to indicate a septic shock. Also, a SOFA score greater than 6
has been associated with a higher mortality (Vincent et al., 1996; Ferreira et al., 2001). The treatment option is whether the
patient took any vasopressors during the first 24 hours after sepsis onset. The outcome is patient survival at day 90. The
analysis cohort contains 6,539 patients in total. We are interested in making decision about whether to treat patients with
vasopressors in the first 24 hours after sepsis onset given the measurements of lactate and SOFA are not available at the time
of decision making.

Results. Table 6 presents the performance of various IDRs on the three applications. As expected, RISE has the largest
objective as well as value among vulnerable subjects. The patterns are similar to that in the synthetic experiments in
Section 3.1. In applications to the job training data and the sepsis study, results show that RISE has a larger value among
all subjects than other IDRs. This is possible when there are more gains in the vulnerable subjects than other subjects,
which further demonstrate the superiority of the proposed approach in improving worst-case outcomes caused by sensitive
variables. We provide visualizations by Shapley additive explanations (SHAP) (Lundberg & Lee, 2017) for RISE and Exp,
respectively, in Appendix G about feature importance in the final classification models to help interpret important covariates
in making the decisions. The SHAP approach provides united values to describe the correlation between each feature and
the predicted decision rule, respectively (Lundberg & Lee, 2017). Overall, the direction of correlations is similar for RISE
and Exp, but their ranking of feature importance may be different.

Table 6: Estimated objective and value of different IDRs for the three data applications. Standard error in parenthesis. The
outcome of each study is italicized.

Dataset IDR Obj. (all) Obj. (vulnerable) Value (all) Value (vulnerable)

NSW
log(income+1)

Base 5.26 (0.04) 5.28 (0.05) 6.32 (0.05) 6.33 (0.07)
Exp 5.22 (0.04) 5.24 (0.05) 6.37 (0.05) 6.37 (0.07)

RISE 5.43 (0.04) 5.44 (0.04) 6.42 (0.04) 6.42 (0.06)

ACTG175
CD4 T-cell amount

Base 336.9 (1.65) 338.1 (2.23) 350.5 (1.86) 357.5 (2.24)
Exp 337.5 (1.65) 338.9 (1.80) 351.9 (1.95) 359.1 (2.21)

RISE 351.5 (1.67) 351.2 (1.80) 351.8 (1.88) 363.1 (2.19)

Sepsis
survival rate

Base 0.752 (0.001) 0.721 (0.001) 0.965 (0.001) 0.905 (0.002)
Exp 0.752 (0.001) 0.721 (0.002) 0.966 (0.001) 0.908 (0.002)

RISE 0.771 (0.001) 0.735 (0.001) 0.972 (0.001) 0.923 (0.002)

G.1. Additional Background on the Sepsis Application

Sepsis is leading cause of acute hospital mortality and commonly results in multi-organ dysfunction among ICU patients
(Sakr et al., 2018). Clinically, treatment decisions for sepsis patients are needed to be made within a short period of time
due to the rapid deterioration of patient conditions. Lactate and the Sequential Organ Failure Assessment (SOFA) score
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have been two important indicators of sepsis severity and has been found to be more useful for predicting the outcome of
sepsis than other clinical vitals and comorbidity scores (Howell et al., 2007; Krishna et al., 2009; Shankar-Hari et al., 2016).
Typically, information of baseline patient characteristics such as age, gender, race, and weight, and common vital signs such
as usage of mechanical ventilation, respiratory rate, temperature, intravenous fluids, Glasgow Coma Scale score, platelets,
blood urea nitrogen, white blood cell counts, glucose, and creatinine are obtained at the admission of patients. On the other
hand, SOFA score combines performance of several organ systems in the body such as neurologic, blood, liver, and kidney
(Seymour et al., 2016) and cannot be obtained directly. Lactate labs measures the level of lactic acid in the blood (Andersen
et al., 2013) and are less common in routine examination, which could be delayed in ordering. Hence, their information
may not be available by the time of treatment decision due to multiple reasons including doctors’ delayed ordering, long
laboratory processing time, or the rapid deterioration of development of sepsis, which poses tremendous difficulties for early
diagnosis and treatment decisions within a short time.

G.2. Data Availability

The access of the job training dataset (LaLonde, 1986) is available at https://users.nber.org/~rdehejia/
data/.nswdata2.html. The access of the ACTG175 dataset (Hammer et al., 1996) is available from the R package
speff2trial. The third dataset (Seymour et al., 2016) is not publicly available. All real data used in the paper are
deidentified with no personal information.

G.3. Visualization

Here we provide visualizations of features that are important in the estimated decision rules for the three real-data applications
in Section 3.2. The Shapely additive explanations (SHAP) (Lundberg & Lee, 2017) is considered to be a united approach to
explaining the predictions of any machine learning or black-box models. Figure 1, Figure 2, and Figure 3 presents the SHAP
variable importance plots in the final weighted classification model by RISE and Exp, respectively, for the three real-data
applications. Correlations between the feature and their SHAP value are highlighted in color. The red color means a feature
is positively correlated with assigning treatment A = 1 and the blue indicates a negative correlation. Overall, the direction of
correlation is similar for RISE and Exp, but their ranking of feature importance may be different.

Fairness in a job training program. Figure 1 presents the SHAP variable importance plots in the final weighted
classification model by RISE and Exp, respectively. We observe that whether having a high school diploma and income in
1974 are two important features in the variable important plot by RISE, while incomes in 1974 and in 1975 are important
by Exp. It seems that being no degree and low income in 1974 has a higher chance of assigning A = 1 (to receive the job
training program) by RISE, while low income in 1974 and but a higher income in 1975 may be associated with assigning
A = 1 by Exp.

Improvement of HIV treatment. Figure 2 presents the SHAP variable importance plots in the final weighted classification
model by RISE and Exp, respectively. We observe that age and CD4 T-cell counts are two important features in the variable
important plot by RISE, while weight and number of days of previously received antiretroviral therapy are important by
Exp. It seems that being of a younger age and high CD4 T-cell count has a higher chance of assigning A = 1 (zidovudine
combined with didanosine) by RISE, while being of a larger weight and few days of previously received antiretroviral
therapy may be associated with assigning the treatment by Exp.

Safe resuscitation for patients with sepsis. Figure 3 presents the SHAP variable importance plots in the final weighted
classification model by RISE and Exp, respectively. We observe that Glasgow Coma Scale score, age, and platelets
appears to be important features in both the plot by RISE and that by Exp. Other important features in the plot by RISE
include temperature and blood urea nitrogen, where in the plot by Exp, respiratory rate and white blood cell counts are
of top importance. Being in a low temperature with a high blood urea nitrogen tends to be predicted as A = 1 (to assign
vasopressors) by RISE while being of higher respiratory rate with high white blood cell counts tends to be predicted as
A = 1 by Exp.

https://users.nber.org/~rdehejia/data/.nswdata2.html
https://users.nber.org/~rdehejia/data/.nswdata2.html
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Figure 1: Visualization for the job training program: SHAP variable importance plots for decision rules RISE (a) and
Exp (b), respectively. Covariates (X) are ranked by variable importance in descending order. Correlations between the
feature and their SHAP value are highlighted in color. The red color means a feature is positively correlated with assigning
treatment A = 1 and the blue indicates a negative correlation.
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Figure 2: Visualization for the ACTG175 dataset: SHAP variable importance plots for decision rules RISE (a) and Exp (b),
respectively. Covariates (X) are ranked by variable importance in descending order. Correlations between the feature and
their SHAP value are highlighted in color. The red color means a feature is positively correlated with assigning treatment
A = 1 and the blue indicates a negative correlation.
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Figure 3: Visualization for the sepsis data: SHAP variable importance plots for decision rules RISE (a) and Exp (b),
respectively. Covariates (X) are ranked by variable importance in descending order. Correlations between the feature and
their SHAP value are highlighted in color. The red color means a feature is positively correlated with assigning treatment
A = 1 and the blue indicates a negative correlation.


