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Abstract

We investigate a natural but surprisingly unstud-
ied approach to the multi-armed bandit problem
under safety risk constraints. Each arm is asso-
ciated with an unknown law on safety risks and
rewards, and the learner’s goal is to maximise
reward whilst not playing unsafe arms, as deter-
mined by a given threshold on the mean risk.

We formulate a pseudo-regret for this setting that
enforces this safety constraint in a per-round way
by softly penalising any violation, regardless of
the gain in reward due to the same. This has
practical relevance to scenarios such as clinical
trials, where one must maintain safety for each
round rather than in an aggregated sense.

We describe doubly optimistic strategies for this
scenario, which maintain optimistic indices for
both safety risk and reward. We show that schema
based on both frequentist and Bayesian indices
satisfy tight gap-dependent logarithmic regret
bounds, and further that these play unsafe arms
only logarithmically many times in total. This the-
oretical analysis is complemented by simulation
studies demonstrating the effectiveness of the pro-
posed schema, and probing the domains in which
their use is appropriate.

1. Introduction
We consider the safety constrained multi-armed bandit prob-
lem, where each arm, k ∈ [1 : K] is modelled by a tuple,
consisting of a stochastic reward, of mean µk, and an as-
sociated stochastic safety-risk, of mean νk. Upon playing
an arm, the learner observes noisy instances of the reward
and safety-risk. The learner is provided with a tolerated risk
level, denoted α, and the goal of the safe bandit problem is
to maximise the reward gained over the course of play, while
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ensuring that unsafe arms—those for which νk > α—are
not played too often.

We propose the following regret formulation to model the
above criteria. Let µ∗ be the mean reward of the largest safe
action, i.e, the largest µk over arms such that νk ≤ α. Let
At be the arm pulled by the algorithm at time t. We study

RT :=
∑
t≤T

max(µ∗ − µAt , νAt − α). (1)

We explore doubly optimistic index-based strategies for
choosing arms. These maintain optimistic indices for both
the reward and safety risk of each arm, and proceed by first
developing a set of plausibly safe actions using the safety
indices, and then choose the arm with the highest reward
index to play, thus encouraging sufficient exploration. We
show that these strategies admit strong gap-dependent loga-
rithmic regret rates. Further each of these also ensure that
the number of times any unsafe arm is played is similarly
logarithmically bounded. Finally we show a lower bound
which demonstrates that our regret bounds are tight in the
limit of large time horizons. We also complement the above
theoretical study with simulations.

1.1. Related Work

Bandit problems are exceedingly well studied, and a
plethora of methods with subtle differences have been estab-
lished. We refer the reader to the recent book of Lattimore
& Szepesvári (2020) for a thorough introduction.

The theory of bandits with global constraints was initiated
by Badanidiyuru et al. (2013), and extended by Agrawal &
Devanur (2014). Specialised to our context, these works
constrain the total number of adverse effects whilst match-
ing the performance of the optimal dynamic policy that is
aware of all means. The recent work of Pacchiano et al.
(2021) studies the safe bandit problem with two crucial
differences from us. Firstly, the action space is lifted from
single arms to policies (i.e. distributions) over arms, denoted
πt, and secondly, the hard per-round constraint ⟨πt, ν⟩ ≤ α
is enforced. Of course, actual arms are selected by sampling
from πt. The regret studied is

∑
⟨π∗ − πt, µ⟩, where π∗ is

the optimal static safe policy, i.e., the maximiser of ⟨π, µ⟩
subject to ⟨π, ν⟩ ≤ α. Exploration is enabled by giving the
scheme an arm ks known a priori to be safe, and by spend-



Acting Optimistically in Choosing Safe Actions

ing the slack α− νks as room for exploration in πt. While
ostensibly constrained at each round, this formulation suf-
fers from similar issues as the previously discussed globally
constrained formulations since the optimal static policy is
only safe in aggregate.

A similar approach, but crucially without the policy action
space, was taken by Amani et al. (2019); Moradipari et al.
(2021) for in the linear bandit setting. These papers also
study hard round-wise safety constraints, and again utilise
a known safe action, as well as the continuity of the action
space to enable sufficient exploration. We note that the
particulars of the signalling model adopted by Amani et al.
(2019) paper preclude extending their results to the multi-
armed setting, and while the model of Moradipari et al.
(2021) does admit such extension, the scheme proposed
fundamentally relies on having a continuous action space
with a linear safety-risk, and cannot be extended to multi-
armed settings without lifting to policy space.

2. Definitions and Setup
An instance of the safe bandit problem is defined by a risk
level α ∈ [0, 1], a natural K ≥ 2, corresponding to a number
of arms, and a corresponding vector of probability distri-
butions, (Pk)k∈[1:K], each entry of which is supported on
[0, 1]2. We will represent the corresponding random vector
as two components (R,S), which are termed the reward
and safety-risk of a draw from Pk. We further associate two
vectors µ, ν ∈ [0, 1]K , corresponding to the mean reward
and safety-risk of each arm, i.e

(µk, νk) := E(R,S)∼Pk [(R,S)].

The scenario proceeds in rounds, denoted t ∈ N. At each
t, the learner (i.e. an algorithm for the bandit problem)
must choose an action At ∈ [1 : K]. Upon doing so,
the learner receives samples (Rt, St) ∼ PAt independently
of the history. The learner’s information set at time t is
Ht−1 = {(As, Rs, Ss) : s < t}, and the action At must be
adapted to the filtration induced by these sets.

The competitor, representing the best safe arm given the
safety constraint and the mean vectors, is defined as

k∗ = argmax
k∈[1:K]

µk s.t. νk ≤ α,

and its mean reward and safety risk are denoted as µ∗, ν∗.
We will use this convention throughout - for any symbol
sk, we set s∗ = sk

∗
. We can ensure that the problem is

feasible by including a no-reward, no-risk arm of means
(0, 0) - this might correspond to a placebo in a clinical trial.
Without loss of generality, we will assume that k∗ is unique.
We define the inefficiency gap ∆k and the safety gap Γk of
playing an arm k as

∆k := 0 ∨ (µ∗ − µk), Γk := 0 ∨ (νk − α),

The performance of a learner for the safe bandit problem is
measured by the (pseudo-) regret of (1), which may also be
written asRT :=

∑
1≤t≤T ∆At ∨ ΓAt .

Further, with each arm k, we associate state variables Nk
t

denoting the number of times it has been played up to time
t, and Rk

t , S
k
t denoting the total rewards and safety risk

incurred on such rounds. More formally,

Nk
t :=

∑
s<t

1{At = k},

Rk
t :=

∑
s<t

1{At = k}Rt, & Sk
t :=

∑
s<t

1{At = k}St.

Notice that Rt =
∑

k ̸=k∗(∆k ∨ Γk)Nk
t . We also use the

notation µ̂k
t := Rk

t /N
k
t , ν̂

k
t := Sk

t /N
k
t .

Since controlling it is of natural interest, we define the
number of times an unsafe arm is played as

UT :=
∑
t

1{νAt > α}.

Finally, for a, b ∈ [0, 1], we introduce the notation
d<(a∥b) := d(a∥b)1{a < b},
d>(a∥b) := d(a∥b)1{a > b}.

where d(a∥b) denotes the KL divergence between Bernoulli
laws with means a and b.

3. Doubly Optimistic Confidence Bounds
The use of optimistic confidence bounds is well established
in standard bandits (e.g. Ch. 7-10 Lattimore & Szepesvári,
2020). The idea is that pulling according to the maxi-
mum optimistic bound on the means encourages exploration,
while efficiency follows because the confidence bounds ex-
ploit information to shrink towards the means, eventually
giving evidence for the inefficiency of suboptimal arms.

The idea behind doubly optimistic bounds is identical - we
maintain lower bounds on safety-risk Lk

t and upper bounds
on rewards Uk

t such that Lk
t ≤ νk and Uk

t ≥ µk with high
probability. We then construct a set of ‘permissible arms’
Πt := {k : Lk

t ≤ α} - these are all the arms that are
plausibly feasible given the information we have up to time
t. At is selected to maximise Uk

t amongst k ∈ Πt. The
broad scheme is described in Algorithm 1. We will explicitly
analyse the scheme by instantiating the method with bounds
based on KL-UCB (Garivier & Cappé, 2011), which offer
optimal mean-dependent regret control for standard bandits.

The KL-UCB type bounds take the following form
γt := log t+ 3 log log t,

U(t,Ht−1, k) := max{q > µ̂k
t : d(µ̂k

t ∥q) ≤ γt/N
k
t },

L(t,Ht−1, k) := min{q < ν̂kt : d(ν̂kt ∥q) ≤ γt/N
k
t },

where γt trades-off the width and consistency of U,L. These
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Algorithm 1 Doubly Optimistic Confidence Bounds
1: Input: K, functions U,L.
2: Initialise: H0 ← ∅
3: for t = 1, 2, . . . do
4: if t ≤ K then
5: At ← t
6: else
7: ∀k, Lk

t ← L(t,Ht−1, k).
8: Πt ← {k : Lk

t ≤ α}.
9: ∀k ∈ Πt, U

k
t ← U(t,Ht−1, k).

10: At ← argmaxk∈Πt
Uk
t .

11: end if
12: Pull At, receive (Rt, St) ∼ PAt .
13: Update Ht ←Ht−1 ∪ {(At, Rt, St)}.
14: end for

bounds are natural for Bernoulli random variables, and since
these are the ‘least-concentrated’ law on [0, 1], the fluctu-
ation bounds extend to general random variables. Using
these, we show the following result.

Theorem 1. Algorithm 1 instantiated with KL-UCB type
bounds attains the following for any T and any ε > 0.

E[RT ] ≤
∑
k ̸=k∗

(1 + ε)(∆k ∨ Γk) log T

d<(µk∥µ∗) ∨ d>(νk∥α)
+ ξk,

where ξk = O(log log T + ε−2). Further, the number of
times an unsafe arm is played is bounded as

E[UT ] ≤
∑

k:Γk>0

(
(1 + ε) log T

d<(µk∥µ∗) ∨ d>(νk∥α)

)
+ ξk.

The O in the above hides instance-dependent constants, the
most pertinent of which is a dependence on (∆k ∨ Γk)−3

with the ε−2 term.

Theorem 2. Algorithm 1 instantiated with KL-UCB attains

E[RT ] ≤
√

28KT log T + 6K log log T + 32.

4. Bayesian Methods
This section explores the use of Bayesian methods for safe
bandits. It is natural to consider maintaining frequentist
and Bayesian indices for the reward and safety-risk, and we
present the Thompson Sampling with BayesUCB scheme
as an example. In the subsequent, we restrict analysis to the
case of Bernoulli bandits, i.e., where the laws Pk are such
that marginally R ∼ Bern(µAt) and S ∼ Bern(νAt).

4.1. Thompson Sampling with BAYESUCB

We take the tack of using a Bayesian confidence bound,
essentially exploiting the BAYESUCB method of Kaufmann
et al. (2012). The idea is to choose a δkt th quantile of the
posterior P k

t,ν as a score, where δkt is a schedule that decays

Algorithm 2 Thompson Sampling with BAYESUCB (TSBU)
for Bernoulli Bandits

1: Input: K, schedule δkt .
2: Initialise: H0 ← ∅.
3: for t = 1, 2, . . . do
4: ∀k
5: if Sk

t = 0 then
6: Lk

t ← 0
7: else
8: Lk

t ← Q(Beta(Sk
t , N

k
t − Sk

t + 1), δkt ).
9: end if

10: Πt ← {k : Lk
t ≤ α}.

11: ∀k ∈ Πt, sample ρkt ∼ Beta(Rk
t +1, Nk

t −Rk
t +1)

12: At ← argmaxk∈Πt
ρkt .

13: Pull At, receive (Rt, St) ∼ PAt .
14: Update Ht ←Ht−1 ∪ {(At, Rt, St)}.
15: end for

with t. This is able to exploit the potentially improved
adaptivity of the posterior, but due to δkt being small, would
continue to produce an optimistic score, and so have a high
chance of k∗ ∈ Πt at any time. Additionally, due to the
concentration of the Beta-law for large Nk

t , the score of
unsafe arms would converge towards νk, and thus preclude
their play beyond a point. Altogether, the method seems
tailor-made for our situation of filtering arms at a given level.
The scheme is described in Algorithm 2, where Q(P, δ)
denotes the δth quantile of the law P . We introduce a slight
bias in the same for technical convenience.

Theorem 3. For Bernoulli bandits, Algorithm 2, instan-
tiated with δkt = (

√
8Nk

t t log
3 t)−1 attains the following

regret bound for any ε > 0 and any T :

E[RT ] ≤
∑
k ̸=k∗

(1 + ε)(∆k ∨ Γk) log T

d<(µk∥µ∗) ∨ 2/3 · d>(νk∥α)
+ ξk,

where ξk = O(log log T + ε−2 log(1/ε))

5. Lower Bound
Proposition 4. Any algorithm that ensures that, uniformly
over all instances of safe Bernoulli bandit problems with
independent rewards and safety-risks, the mean number of
plays of any suboptimal arm is bounded as O(T x) for every
x ∈ (0, 1) must satisfy

lim
T↗∞

E[Nk
T+1]

log T
≥ 1

d<(µk∥µ∗) + d>(νk∥α)
.

Since mean regret can be expressed in terms of E[Nk
T ], this

also lower bounds regret.
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Figure 1. Empirical means over 500 trials of Rt (top) and Ut (bot-
tom) for the drug trial data with α = 0.21.

6. Simulations
6.1. Characterisation of the Proposed Schema

We implement the three methods to establish a practical
contextualisation of their performance, and to verify the
theoretical claims. For the sake of realism, we use the data
of Genovese et al. (2013), who report efficacy and infection
rates from a phase 2 randomised trial for various dosages
of a drug to treat rheumatoid arthritis. The dosages studied
were (0, 25, 75, 150, 300) mg, and the observations were

µ = (0.360, 0.340, 0.469, 0.465, 0.537),

ν = (0.160, 0.259, 0.184, 0.209, 0.293).

This data is challenging for any safety level - no matter the
choice, we have to deal with either a potential safety gap
of order 10−2, or an efficacy gap of 10−3, both of which
contribute a large regret. We study the safety level 0.21,
under which arm 3 is optimal, while arms 2, 5 are unsafe.

Observations of Performance From Fig.1, we first note
that both Rt and Ut are well controlled and well within
the theoretical bounds for the methods we have analysed.1

The general trend observed is that algorithms that use a TS-
based index outperform confidence bound indices of Alg. 1,
which is consistent with Chapelle & Li (2011). Finally,
we observe that Alg. 2, as represented by TS+BAYESUCB
outperforms all other methods. These observations held

1The main term of the regret bound is 137 log t, and the unsafe-
arm bound is 81 log t, both > 750 for t > 104.
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Figure 2. Behaviour of Regret at T = 20000 with respect to the
maximum gap. Medians over 100 runs are reported.

regardless of the means we have run the methods on. One
caveat, however, is that the underlying Bernoulli laws used
are well aligned to the priors for Bayesian methods, which
may improve their performance.

Inverse Dependence on Gaps Next, we investigate the
dependence of regret on the gaps ∆k ∨ Γk. First, we will
demonstrate that the regret varies with (∆k ∨ Γk) inversely.
To this end, we study the the cases

µi = (0.5, 0.5− i/25, 0.5 + i/25),

νi = (0.5, 0.5− i/25, 0.5 + i/25),

for α = 0.5 over i in [1 : 10] over 100 trials across a horizon
of T = 2 × 104. Fig. 2 reports the regret RT versus i/25
over this data, and exhibits a clear inverse dependence on i.

Lack of Dependence on Smaller Gaps Secondly, we will
illustrate that the dependence on the gaps is driven by the
larger of ∆k and Γk, but not on (∆k ∧ Γk). For this we
study the data

µi = (0.5, 0.5− i/25, 0.5 + i/250),

νi = (0.5, 0.5 + i/250, 0.5 + i/25),

again with α = 0.5 for 100 trials over a horizon of T =
2× 104. Observe that ∆k ∨ Γk is the same as the previous
case, but ∆k ∧ Γk is reduced by a factor of 10 for each
suboptimal arm. The principal observation from the second
part of Fig. 2 is that the plot remains similar to the previous
case of ‘large’ minimum gaps, bearing out this independence
from the smaller of the two gaps.
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