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Abstract
As AI-based decision-making becomes increas-
ingly impactful on human society, the study of the
influence of fairness-aware policies on the popu-
lation becomes important. In this work, we pro-
pose a framework for sequential decision-making
aimed at dynamically influencing long-term so-
cietal fairness, illustrated via the problem of se-
lecting applicants from a pool consisting of two
groups, one of which is under-represented. We
consider a dynamic model for the composition of
the applicant pool, where the admission of more
applicants from a particular group positively rein-
forces more such candidates to participate in the
selection process. Under such a model, we show
the efficacy of the proposed Fair-Greedy selection
policy which systematically trades greedy score
maximization against fairness objectives. In addi-
tion to experimenting on synthetic data, we adapt
static real-world datasets on law school candidates
and credit lending to simulate the dynamics of the
composition of the applicant pool.

1. Introduction
In this paper, we seek to develop a framework for sequential
decision making aimed at influencing long-term societal
fairness. Machine learning models are being increasingly
applied in making critical decisions that affect humans, such
as recidivism prediction (Dressel & Farid, 2018), mortgage
lending (Berkovec et al., 2018), and recommendation sys-
tems (Yao & Huang, 2017). While the algorithms offer
increased efficiency, speed, and scalability, they could in-
troduce bias leading to the decisions being unfair towards
certain groups of the population. There is a rich and rapidly
growing literature on “fair” strategies that mitigate bias in
algorithmic decision making, including label or data pre-
processing and cost reweighting based on groups (Kamiran
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& Calders, 2012), addition of constraints that satisfy fairness
criteria (Zafar et al., 2017), and learning representations that
obfuscate group information (Zemel et al., 2013).

Modeling the long-term impacts of dynamic decision-
making have been traditionally investigated using reinforce-
ment learning frameworks via Markov Decision Processes
(MDPs) and introducing fairness constraints in the reward
functions (Wen et al., 2021; Ghalme et al., 2021; Jabbari
et al., 2017; Chen et al., 2020; Patil et al., 2020; Joseph et al.,
2018; Heidari & Krause, 2018; Gillen et al., 2018). The im-
portance of introducing dynamics into notions of fairness is
highlighted by (Liu et al., 2018), showing that static fairness
criteria may lead to undesired long-term effects on minority
groups. Prior works on the long-term effects of fairness
such as (Zhang et al., 2019; 2020; Williams & Kolter, 2019;
Mouzannar et al., 2019) have focused, either explicitly or
implicitly, on the impact of decisions on the qualifications
or score distributions of the different groups. We adopt
an outlook complementary to the preceding body of work,
seeking to influence the participation of under-represented
groups in the selection process. Rather than studying the
impact of fair policies, we provide a generic framework for
achieving long-term fairness dynamically.

Our framework is motivated by real-world examples such as
the following. Consider a company receiving applications
every month, which wants to hire in an unbiased manner
(e.g., by ultimately selecting equal numbers of male and
female applicants). With the total intake fixed based on a
budget, the company selects a certain proportion of candi-
dates from each group. The hiring decisions affect the sub-
sequent pool of applicants: admitting more candidates from
a particular group might encourage more such candidates to
apply, or successful candidates from a group might inspire
other such candidates, providing positive feedback into the
decision-making loop. Such a strategy could not only en-
hance diversity and equity, but also enable the company to
learn more about a minority group so as to eventually have a
richer pool of well-qualified applicants. Another motivating
example is college admissions, where the goal may be to
admit students with the best academic records, while ac-
counting for socio-economic background and reducing bias
based on sensitive attributes such as race or gender. Could
one, for example, reverse the trend in the decrease in the
proportion of women in STEM as documented in (Broad &



Dynamic Positive Reinforcement For Long-Term Fairness

McGee, 2014)? It reported that 18% of bachelor’s degrees
in computer science were awarded to women in 2010, down
from 37% in 1985. We suggest here a structured frame-
work for fair selection aimed at combating such systemic
imbalances by encouraging a larger number of people from
minority groups to participate in the selection process.

Contributions Based on a simple model for evolution
of the composition of the applicant pool, we develop a
framework for fair selection by formulating the problem
as a Markov Decision Process (MDP) with two objectives
– maximizing the utility by admitting candidates with the
highest scores, and minimizing the disparity between the
proportions of selected candidates from each group. We
present two policies for fair selection: an optimal policy
based on value iteration that maximizes the utility accumu-
lated over multiple rounds, and a computationally simpler
Fair-Greedy (FG) policy. We characterize the structure of
the FG policy, show convergence and also prove that the
applicant pool proportion approaches the target proportion
that is desired by the system under identical score distribu-
tions across the groups. When the score distributions are
distinct, we provide experimental evidence of convergence
of the applicant pool proportion. We illustrate the efficacy
of our approach with experiments with synthetic data, as
well as with dynamic data created from the static datasets.

2. MDP formulation and Fair-Greedy Policy
Given that there are two groups u and v within the pop-
ulation, based on a binary valued sensitive attribute, we
denote the total number of applicants in round t by Nt, out
of which Nu

t belong to group u and Nv
t = Nt−Nu

t belong
to group v, based on a binary valued sensitive attribute. We
wish to admit a fixed proportion ā of the total applicants,
leading to At = āNt number of total applicants accepted
in round t. We denote by Au

t and Av
t = At −Au

t the num-
ber of applicants selected in round t from groups u and v
respectively.

Score distributions The qualification of an applicant is
measured by the score, assumed to be an increasing function
of the proficiency of a candidate. Let Pu and Pv denote the
score distributions of the two groups. Thus the scores for
groups u and v are {Xu

i }
Nu

t
i=1 and {Xv

i }
Nv

t
i=1, generated from

Pu and Pv respectively. We denote the ordered scores by
{Xu

(i)}
Nu

t
i=1 and {Xv

(i)}
Nv

t
i=1, where Xu

(i) and Xv
(i) denote the

ith largest scores out of Nu
t and Nv

t respectively.

Fairness-aware utility The goal is to optimize the utility,
which comprises of two parts: a greedy term (to be max-
imized) which is the expected sum of scores of selected
candidates, and a fair term (to be minimized) measuring
disparity between groups based on a target proportion.

MDP formulation We define the MDP state st ∈ [0, 1]
as the proportion of applicants from group u out of the
total, and the action at ∈ [0, 1] as the proportion of selected
candidates from group u out of the total selected candidates:

st =
Nu

t

Nt
, at =

Au
t

At
.

We denote by s̄ ∈ (0, 1) the long-term target of the propor-
tion of group u among the selected applicants. For example,
if group u is under-represented in the applicant pool, we
may set s̄ as the proportion of group u in society at large.
Instead, if our long-term goal is to admit equal number from
both groups, we set s̄ = 0.5. Note that formulating the
states and actions as proportions of group u is sufficient
since the proportion of applicants and admitted candidates
from group v is naturally 1−st and 1−at respectively. The
overall utility or reward is:

R(st, at) = RG(st, at)− λLF (at), (1)

where the greedy reward term is the expected sum of ordered
scores of admitted candidates, given by:

RG(st, at) =
1

At
E
[ Au

t∑
i=1

Xu
(i) +

Av
t∑

i=1

Xv
(i)

]

=
1

At
E
[ atAt∑

i=1

Xu
(i) +

(1−at)At∑
i=1

Xv
(i)

]
,

and the fairness loss term is

LF (at) = (at − s̄)2. (2)

In (1), λ ≥ 0 is a parameter used to control the weight given
to the fairness objective relative to the greedy objective. The
greedy objective promotes the admission of good candidates,
while the fairness objective promotes fairness in selection
proportion. Note that the fairness objective is balanced:
it pushes the selection proportion towards s̄ regardless of
whether group u is under-represented or over-represented
among the selected applicants.

Applicant pool evolution We model the positive rein-
forcement provided by our decision making as a set of tran-
sition probabilities P(st+1|st, at). We consider a model
where the total number of applicants Nt to the system at
round t can be any sequence of numbers and the number
of applicants from group u to the system is sampled from
a Poisson distribution based on the mean parameter and
overall number of applicants (which is variable) as

Nu
t ∼ Pois(θtNt), (3)

where Pois(·) is the Poisson distribution with mean θtNt.
Thus, θt is the mean proportion of group u in the applicant
pool in round t. We consider the following simple model
for positive reinforcement:

θt+1 = [θt + η(at − st)]C , (4)
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where η is a step-size parameter and [·]C is the projection
on the convex set C = [0, 1]. Thus the update is such that
when the admission rate at of the group u is higher than
the application rate st, more applicants from the group are
encouraged in future rounds, and vice versa. The state then
evolves as

st+1 =
Nu

t+1

Nt+1
.

The model for positive reinforcement is relevant to many
real-world selection systems and is inspired by the social
behavior that the successful admission of candidates from a
particular group encourages more such candidates to apply
to the institution. For instance, a large number of female col-
lege graduates in society serve as role-models, encouraging
the future generations of women to go to college. However,
if a particular program is known for admitting women at a
rate smaller than the application rate, lesser women might
consider the institution as worth applying to.

Optimal policy The optimal policy π∗(s) for the preced-
ing MDP can be found through dynamic programming, by
constructing value functions (Bertsekas, 2007) and itera-
tively solving the Bellman equation. It is also known that
the value iteration algorithm converges as long as the reward
is bounded in magnitude (Bertsekas, 2007). However, ana-
lyzing the equilibrium state of the MDP under this optimal
policy is intractable. We observe through simulations that
the structure of the optimal policy π∗(s) is similar to that of
the simpler Fair-Greedy policy proposed next, and that the
applicant pool evolution converges to an equilibrium point.

Fair-Greedy policy Finding an optimal policy is compu-
tationally expensive as the state space grows larger. We
therefore propose a simple, yet effective, Fair-Greedy (FG)
policy that optimizes the instantaneous overall utility in (1):

π∗
FG(s) = argmax

a
R(s, a). (5)

We provide insight into this policy by considering its perfor-
mance for a large applicant pool (Nt large) with identical
score distributions across the two groups. In this regime, we
first prove that the greedy reward term is optimized when the
admission proportion is the same as the applicant proportion.
We then derive some key properties of the FG policy, and
provide theoretical guarantees for the convergence of the
applicant pool to the target proportion. We observe through
simulations that when score distributions are non-identical,
the applicant pool converges to an equilibrium point un-
der the FG policy. Please refer to Appendix A for detailed
proofs.

Theorem 2.1. If the score distributions Pu and Pv of the
two groups are identical, under the regime of large Nt, the
greedy reward RG(st, at) is optimized by the action:

a∗G = argmax
at

RG(st, at) = st. (6)

Theorem 2.2. For identical score distributions across the
groups, the Fair-Greedy policy satisfies the following: (a)
st < π∗

FG(st) < s̄, if st < s̄; (b) s̄ < π∗
FG(st) <

st, if st > s̄; (c) π∗
FG(st) = s̄, if st = s̄. Furthermore,

if the step-size ηt decays with time and satisfies the condi-
tions (i)

∑
t ηt = ∞ and (ii)

∑
t η

2
t < ∞, the applicant

pool proportion converges to the target proportion s̄. This
implies that the admission or action at equilibrium also ap-
proaches the societal or target proportion, in the asymptotic
regime that the total applicants in every round are large.

3. Experimental evaluation
FG policy on synthetic data: We begin by evaluating our
framework with synthetic Gaussian datasets. In the first
experiment, we set the target proportion s̄ = 0.4 and the
selection rate ā = 0.3 (i.e., we aim to select 30% of the can-
didates who have applied). We assume identical Gaussian
score distributions for the groups with means µu = µv = 5
and variances σ2

u = σ2
v = 1. The step-size is fixed as

η = 0.05. Figure 1(a) shows the convergence of the appli-
cant pool to the target proportion of 40% as guaranteed by
our analysis. The framework is capable of handling an inver-
sion in the majority and minority proportions as supported
by the evolutions shown from two distinct initial applicant
mean proportion parameters θ0 = 0.1 and θ0 = 0.9. We
report on the dynamics for the proportion of applicants and
admitted candidates for individual sample paths in which
the number of applicants is randomly drawn as in (3). We
do not smooth over multiple sample paths in such figures
because our objective is to highlight the convergence of the
mean parameter θt over each sample path. Note that tuning
of the hyperparameter λ is not required when score distribu-
tions are identical (here we set λ = 2). As long as λ > 0,
the applicant pool converges to the target proportion, with
only the rate of convergence increasing with λ, as we depict
in Figure 1(b). Next, we focus on a setting where the under-
privileged class u has larger variance, but slightly smaller
mean (σ2

u = 1.5, µu = 4.9). We set s̄ = 0.4, and consider a
more selective process, with ā = 0.1. From Figure 1(c), we
note that the applicant mean and also the group admission
converges to a proportion larger than s̄. This is due to the
fact that as the admission rate gets selective, the greedy part
of the reward is optimized by an action that admits more
from the group with longer tail (larger variance). This is also
evident in Figure 1(d), where we observe that for smaller
values of λ, i.e., when more weight is assigned to the greedy
reward, the mean parameter θt converges to larger values.
However with enough weight being given to fairness, the
applicant pool still converges to the desired ratio.

FG policy on real-world datasets: We simulate the dy-
namics by considering the following: (i) the law school
(LS) (Wightman, 1998) bar exam dataset found at (git,
2018), applying our framework for selecting candidates who
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Figure 1: (a) FG policy under identical score distribution across groups, showing convergence from distinct initial mean
parameters θ0 = 0.1, 0.9. (b) Applicant pool converges to target under identical score distributions. (c) FG policy under
selective system, lower mean and larger variance for group u. Shows convergence from θ0 = 0.1, 0.9. (d) Applicant pool
convergence for the selective system under FG policy. (e) Histograms and Gaussian fit for score distributions of the law
school dataset (f) Applicant pool evolution with θ0 = 0.25, with varying λ for the law school dataset.

Dataset µu µv σ2
u σ2

v

LS bar study -1.46 0.79 2.73 3.16
German credit 0.32 0.85 1.93 2.06

Table 1: Gaussian score distribution parameters

are likely to be successful in the bar exam, based on fea-
tures such as LSAT scores, undergraduate GPA, law school
GPA and others, with race as the sensitive attribute; (ii) the
German credit dataset (Dua & Graff, 2017) with gender as
the sensitive attribute, where the motivation is to encourage
higher levels of participation of women in the financial lend-
ing system. From the raw datasets, we calculate the score
distributions by fitting a logistic regression based predictor.
The histograms of the scores of the two groups resemble
the Gaussian distribution. We fit a Gaussian for each of the
histograms, to obtain the mean and variance parameters of
the score distributions Pu and Pv , listed in Table 2.

In the experiments with LS dataset we set selection rate
ā = 0.3, and target proportion s̄ = 0.5. Figure 1(e) depicts
the distinct group-wise score distributions for the LS dataset,
and Figure 1(f) shows the convergence of the applicant pool
by plotting the mean parameter θt for various settings for
the hyperparameter λ. The initial mean for the applicant

proportion is set to θ0 = 0.25, based on the proportion of
non-white samples in the dataset. Since the mean of scores
of the underprivileged group is smaller and the application
is not very selective, the utility is maximized by admitting
more from the privileged group. However, as the importance
of fairness is increased through λ, the applicant pool and
admission rate both approach 50%. We defer the plots
for the German dataset and other experimental details to
Appendix B, but remark that since the score distributions
for the German dataset are closer, the value of λ required
to achieve similar fairness target is smaller than that for the
law school dataset.

4. Conclusion
In this paper, we propose a framework for fair selection of
applicants to a system, and study the long-term effects of
decisions on the dynamics of the applicant pool. Our results
indicate the potential of achieving long-term fairness objec-
tives through positive reinforcement via decision making.
We hope that this work stimulates the collaboration between
machine learning researchers and social scientists required
for these ideas to make real-world impact. A key future di-
rection is to devise and conduct experiments for measuring,
understanding and shaping the evolution dynamics posited
in our framework.
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A. Proofs
We restate and prove the theorems on the optimality of greedy reward and the convergence of the applicant pool under
identical score distributions in this section.

Theorem A.1. If the score distributions Pu and Pv of the two groups are identical, the greedy reward RG(st, at) is
optimized by the action:

a∗G = argmax
at

RG(st, at) = st. (7)

Proof. Recall that the greedy reward is given by:

RG(st, at) =
1

At
E
[ Au

t∑
i=1

Xu
(i) +

Av
t∑

i=1

Xv
(i)

]
(8)

Since we assume the space of actions as at ∈ [0, 1], the number of admitted candidates from each group, more formally, are
Au

t = ⌊atAt⌋ and Av
t = ⌊(1− at)At⌋. For simplicity of presentation, we omit the ‘floor’ without loss of generality of our

results since we are interested in the regime that Nt is large. Therefore, we write:

RG(st, at) = atE

[∑atAt

i=1 Xu
(i)

atAt

]
+ (1− at)E

[∑(1−at)At

i=1 Xv
(i)

(1− at)At

]

By the law of large numbers, the collection of score variables {Xu
i }

Nu
t

i=1 and {Xv
i }

Nv
t

i=1 converge to their respective distri-
butions Pu and Pv as Nt increases. Choosing the top Au

t = atAt candidates out of Nu
t (similarly top Av

t out of Nv
t ) is

equivalent to setting a threshold tu (similarly, tv) and admitting all candidates with scores above the threshold. This holds
for generic score distributions and they need not necessarily be identical across the groups. Thus for large Nt, the average
score of the admitted candidates from each group approaches its expected value as:

lim
Nt−→∞

∑atAt

i=1 Xu
(i)

atAt
= E[Xu|Xu ≥ tu] (9)

lim
Nt−→∞

∑(1−at)At

i=1 Xv
(i)

(1− at)At
= E[Xv|Xv ≥ tv] (10)

Rewriting the greedy reward in terms of the above conditional expectations leads to the following equation:

RG(st, at) = at

∫∞
tu

uPu(u)du∫∞
tu

Pu(u)du
+ (1− at)

∫∞
tv

vPv(v)dv∫∞
tv

Pv(v)dv
(11)

with the additional constraint being that the thresholds tu and tv are such that the total number of admitted candidates is
equal to At = āNt. Note that tu and tv depend on the current state st and action at.

Since the acceptance is decided by a group-wise threshold, the fraction of applicants from a group who are admitted is
precisely determined by the area under its score distribution beyond the threshold. Formalizing the above, for large Nt, we
have: ∫ ∞

tu

Pu(u)du = 1− Fu(tu) =
atAt

stNt∫ ∞

tv

Pv(v)dv = 1− Fv(tv) =
(1− at)At

(1− st)Nt
.

and the constraint on the total number of candidates admitted can now be expressed through the following equivalent
statements:

atAt + (1− at)At = āNt

stNt(1− Fu(tu)) + (1− st)Nt(1− Fv(tv)) = āNt,
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and finally, we have:

stNt

∫ ∞

tu

Pu(u)du+ (1− st)Nt

∫ ∞

tv

Pv(v)dv = āNt. (12)

Let us now consider the maximization of the greedy reward. Given state st, and generic distributions Pu and Pv , we need to
set the thresholds tu and tv for the respective groups such that the sum of scores of all admitted candidates is maximized.
We show by contradiction that to maximize the greedy reward, we require tu = tv .

Assume a pair of thresholds (tu, tv) that result in the maximization of the greedy reward, and tu < tv. Let us denote
the expected sum of scores of the admitted candidates by S(tu, tv), which is the optimum. One can construct thresholds
t′u = tu + ϵ1 and t′v = tv − ϵ2 (where ϵ1, ϵ2 > 0, infinitesimally small for large Nt), such that we admit one more candidate
from group v (as a result of the decreased threshold) and one less from group u (as a result of the increased threshold) as
compared to the case with thresholds (tu, tv). As long as t′v > t′u, we have S(t′u, t

′
v) > S(tu, tv), which contradicts the

assumption that (tu, tv) maximize the greedy reward. Similarly, if we begin with a pair of optimal (tu, tv) such that tu > tv ,
we can construct thresholds t′u = tu − ϵ3 and t′v = tv + ϵ4, so that we admit one more candidate from group u and one less
from group v. As long as t′u > t′v , we arrive at the contradiction S(t′u, t

′
v) > S(tu, tv). Thus the greedy reward is optimized

when thresholds across the groups are equal, irrespective of the nature of Pu and Pv .

Thus, for arbitrary score distributions, the action that maximizes the greedy reward is such that:

tu = tv

=⇒ F−1
u

(
1− atAt

stNt

)
= F−1

v

(
1− (1− at)At

(1− st)Nt

)
(13)

If Pu and Pv are identical, the arguments of the inverse CDFs in (13) need to be equal. Thus the optimal action should be
such that:

1− atAt

stNt
= 1− (1− at)At

(1− st)Nt

=⇒ at = st.

Thus, the greedy reward is maximized by choosing the admission proportion of group u to be same as the applicant
proportion of group u:

a∗G = st.

Employing theorem A.1, we arrive at the the following theorem which informs us about the convergence of the applicant
pool and characterizes the FG policy.

Theorem A.2. For identical score distributions across the groups, the Fair-Greedy policy satisfies the following properties:

st < π∗
FG(st) < s̄, if st < s̄

s̄ < π∗
FG(st) < st, if st > s̄

π∗
FG(st) = s̄, if st = s̄

Furthermore, if the step-size ηt decays with time and satisfies the conditions (i)
∑

t ηt = ∞ and (ii)
∑

t η
2
t < ∞, the

applicant pool proportion converges to the target proportion s̄. This implies that the admission or action at equilibrium also
approaches the societal or target proportion, in the asymptotic regime that the total applicants in every round are large.

Proof. Under the FG policy, at = π∗
FG(st). The applicant pool update for the mean parameter is:

θt+1 = [θt + η(π∗
FG(st)− st)]C . (14)

The fairness loss in (2) is minimized when the admission proportion is same as the target, formalized as:

a∗F = argmin
at

LF (at) = s̄
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The overall reward R(st, at) is a sum of the greedy reward and fairness loss (scaled by λ). The fairness loss is convex
(hence −LF (at) is concave) in at. It can be seen that the greedy reward monotonically decreases in either directions around
at = st, and in addition it possesses continuity in at. When at state st, suppose the optimal action a∗ of the FG policy
is such that a∗ < st, when st < s̄. Then by continuity and since the greedy reward is maximized at st, ∃ some a′ > st,
such that RG(st, a

′) ≥ RG(st, a
∗), and moreover has a smaller fairness loss, i.e., LF (a

′) < LF (a
∗), which violates the

optimality of a∗. Thus the optimal action for the FG policy must be a∗ > st, if st < s̄. Similar arguments hold if st > s̄,
and here we can show that the optimal action must be such that a∗ < st. Hence, it follows that the optimal action for overall
utility lies between the optimal actions for greedy and fairness terms:

st < π∗
FG(st) < s̄, if st < s̄ (15)

s̄ < π∗
FG(st) < st, if st > s̄ (16)

π∗
FG(st) = s̄, if st = s̄ (17)

Now we show the convergence of the applicant pool to its equilibrium. Let us consider a step-size that decays with time such
that

∑
t ηt = ∞ and

∑
t η

2
t < ∞. Consider the case when st < s̄, where we have: st < π∗

FG(st) < s̄. From (14), we can
see that the mean proportion parameter θt+1 increases. Similarly, when st > s̄, it follows that s̄ < π∗

FG(st) < st, and the
mean proportion parameter decreases. Note that the target proportion is a fixed point of the FG policy, i.e., π∗

FG(s̄) = s̄. Due
to the above characterization of π∗

FG(st) and the model for the update of the applicant pool, the mean parameter θt grows or
reduces in the direction of s̄. Hence, as the step-size is decaying, one can show that the mean parameter θt converges to s̄
(see Lemma A.3 for details). Moreover, the variance of the number of group u applicants is var(Nu

t ) = θtNt due to the
Poisson distribution. Thus, the state st = Nu

t /Nt has variance O(1/Nt). Consequently, in the asymptotic regime that Nt is
large, using Chebyshev’s inequality one can show that st also converges to θt in probability. This implies that the applicant
proportion approaches s̄, which completes the proof.

Lemma A.3. If the step-size ηt decays with time and satisfies the conditions (i)
∑

t ηt = ∞ and (ii)
∑

t η
2
t < ∞, the mean

of the applicant pool proportion for group u converges to the target proportion s̄ under the FG policy, when the score
distributions across the groups are identical.

Proof. We wish to show that θt → s̄ as t → ∞. Let dt = 1
2 (θt − s̄)2. Fix an ϵ > 0. We need to show that there exists some

t0(ϵ) such that when t ≥ t0(ϵ),

dt+1 ≤ dt − γt, if dt ≥ ϵ (18)
dt+1 < cϵ, if dt < ϵ (19)

where c is a positive constant. Moreover γt > 0 and
∑

t γt = ∞. If the above hold, then eventually for some t = t1(ϵ) ≥
t0(ϵ), one has dt < ϵ. But due to (18) and (19) dt < cϵ for all t > t1(ϵ). Since ϵ is arbitrary, θt → s̄ as t → ∞.

We first show that (19) holds.

dt+1 =
1

2
(θt+1 − s̄)2

=
1

2
([θt − ηt(st − at)]C − s̄)2

≤ 1

2
(θt − ηt(st − at)− s̄)2

= dt + ηt(s̄− θt)(st − at) +
1

2
η2t (st − at)

2

≤ dt + ηt(s̄− θt)(st − at) +
1

2
η2t

≤ dt +
ηt
2
((s̄− θt)

2 + 1) +
1

2
η2t

Since ηt is arbitrarily small, if dt < ϵ, we have:
dt+1 < cϵ. (20)

When dt ≥ ϵ, we want to first show that
(s̄− θt)(θt − at) ≤ −δ(ϵ) (21)
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where δ(ϵ) > 0. If this holds, we have,

dt+1 ≤ dt − ηtδ(ϵ) +
1

2
η2t . (22)

Let us denote γt = ηtδ(ϵ)− 1
2η

2
t . Since ηt → 0, there exists some t2(ϵ) such that γt > 0 for t > t2(ϵ). Moreover, due to

conditions on step size, we have
∑

t γt = ∞.

Next, we will account for the stochasticity of st. We have st − at = θt + (st − θt)− at. Denoting zt = st − θt, we have

dt+1 ≤ dt + ηt(s̄− θt)(θt + zt − at) +
1

2
η2t . (23)

zt is a zero-mean random variable. Also E[z2t ] = var(st) = θt/Nt, which is bounded. Therefore vt :=
∑t

m=0 ηmzm is a
martingale, and E[v2t ] is also bounded. This implies, by the martingale convergence theorem, that vt converges to a finite
random variable. Therefore, we have

∑∞
m=t ηmzm → 0. Since | θt − s̄ | is bounded, the effect of noise zt is asymptotically

negligible.

What remains to be shown is (21). In the regime of large number of applicants Nt, we can see that the state st is equal to
its mean θt with probability approaching one, through the Chebyshev inequality.When dt ≥ ϵ, since st is equal to θt, we
need to consider only the cases (i) st > s̄ and (ii) st < s̄. Under both these cases, we have (s̄− θt)(θt − at) < 0 due to the
structure of the FG policy in (15) and (16), when the score distributions across the groups are identical.

B. Experimental details
B.1. Evaluation on synthetic data

Optimal policy based on value iteration Let us first consider the MDP setting from Section 2, where the policy learnt is
the optimal policy based on value iteration maximizing the accumulated utilities. Consider the case where the two groups
have identical score distributions. This may often be the case in real-world scenarios when there is no inherent reason for the
sensitive attribute to influence the scores or proficiency of a candidate. Let the score distributions be Gaussian with means
µu = µv = 5 and variances σ2

u = σ2
v = 1. In this experiment, we set s̄ = 0.4 and the admission rate is fixed to ā = 0.3, or

in other words, the selector aims to admit only 30% of the total applied candidates. The other parameter values used for this
experiment are γ = 0.99, λ = 1.5, a fixed step-size of η = 0.05. Figure 2 shows how the proportion of applicants, admitted
candidates and mean parameter θt vary for group u. We see in the figure that beginning the process from different initial
states θ0 = 0.1, 0.9, we observe convergence of the applicant pool proportion for group u. The optimal policy under the
evolution model considered has resulted in close to 40% of the applicants belonging to group u, and also approximately the
same proportion of the admitted candidates are from group u. However, here the hyperparameter λ needs to be tuned to
achieve a desired fairness target.
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Figure 2: Optimal policy under identical score distributions across the groups.
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B.2. Evaluation on dynamically adapted real-world datasets

The law school bar exam dataset consists of data collected by a Law School Admission Council survey across law schools
in the United States. The predictions indicate whether or not a candidate would pass the bar exam based on features such
as LSAT scores, undergraduate GPA, law school GPA, race, sex, family income, age and so on. We consider race as the
sensitive attribute, and though originally there are 8 distinct races in the dataset, we group the samples by combining
samples corresponding to all others except ‘white’, giving rise to binary groups ‘white’ and ‘non-white’. The German
credit dataset consists of 1000 instances, with 20 features (both numeric and qualitative), such as credit history, account
history, employment status, age, gender and so on. This is typically used to assess the risk of lending loans to people, i.e., to
determine if granting credit is risky or not. We consider gender as the binary valued sensitive attribute, labeling women as
group u and men as group v. The dataset is imbalanced – about 31% of the instances belong to group u.

After pre-processing the datasets to suit our usage, our first step is to learn a score distribution that measures the proficiency
of every sample. To achieve this, we fit a predictor based on logistic regression that uses the features and labels to fit scores,
which are the derived as the product of the model coefficients and the features. The histograms of the scores of the two
groups reveal that they are Gaussian in nature. We fit a Gaussian distribution for the group-wise scores, to obtain the mean
and variance parameters of the score distributions Pu and Pv .

The histograms and the Gaussian fit for the score distributions for the law school and German credit dataset are depicted in
Figures 1(e) and 3 respectively. For the law school dataset the parameters of scores are µu = −1.46, σ2

u = 2.73, µv = 0.79,
σ2
v = 3.16. For the German credit dataset the score distributions are closer with parameters µu = 0.32, σ2

u = 1.93,
µv = 0.85, σ2

v = 2.06.
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Figure 3: Histograms and Gaussian fit for score distributions of German credit dataset

We will now simulate the dynamics of the application process, under the FG policy, by sampling from these distributions
with initial state of the applicant process θ0 determined by the number of instances of respective groups, which is 0.25 for
the law school and 0.31 for the German credit datasets respectively. The variation of the applicant pool for different values
of hyperparameter λ are shown for the datasets in Figures 1(f) and 4 respectively. The evolution step size used in these
simulations is η = 0.025, admission rate is set to ā = 0.3 and the target proportion is set to s̄ = 0.5, which is equivalent to
demographic parity, i.e., admitting same number proportion of candidates from both groups. In both the figures, we observe
that when the greedy reward is favored (lower values of λ), the applicant pool in fact converges to a point lesser than the
target, while it approaches the target as λ increases. This means that for maximizing the utility, more samples need to be
admitted from group v, due to the nature of their score distributions, when less importance is allotted to fairness objective.
The tuning of the hyperparameter λ to achieve desired level of applicant pool proportion depends on the order statistics of
Pu and Pv . The step-size parameter η can be set appropriately based on how quickly we wish to achieve convergence.

These experiments with real-world datasets indicate that scores which are fit after learning predictors based on logistic
regression are distributed like Gaussians. Once we have the parameters of the scores, the application of the FG policy and
the applicant pool evolution follows.

It is interesting to examine how the score distributions change when we approach fairness through unawareness, that is, by
omitting the sensitive attributes while learning the logistic regression based predictor. Note that we learn a single predictor
based on all samples and then distinguish the scores based on the sensitive attribute. Table 2 lists the score parameters
when the predictor is learnt with or without the inclusion of the sensitive attribute for the law school bar study and the
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Figure 4: German credit dataset: applicant pool convergence with initial mean proportion parameter θ0 = 0.31, as λ is
varied.

German credit datasets. For the law school dataset, we observe that the score distributions are not very different, although
the difference between the means of minority and majority groups has decreased slightly when the sensitive attribute is
dropped during the learning. For the German credit dataset, the distributions are significantly closer when the sensitive
attribute is omitted, and there is a clear drop in the difference between the group means.

Dataset Sensitive µu µv σ2
u σ2

v

attribute
LS bar study included -1.46 0.79 2.73 3.16
LS bar study excluded -1.33 0.76 2.85 3.23

German credit included 0.32 0.85 1.93 2.06
German credit excluded 0.62 0.84 2.03 2.14

Table 2: Gaussian score distribution parameters for different datasets


