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Abstract
We share our experience with the recently re-
leased Crafter benchmark, a 2D open world sur-
vival game. Crafter allows tractable investigation
of novel agents and their generalization, explo-
ration and long-term reasoning capabilities. We
evaluate agents on the original Crafter environ-
ment, as well as on a newly introduced set of
generalization environments, suitable for evaluat-
ing agents’ robustness to unseen objects and fast-
adaptation (meta-learning) capabilities. Through
several experiments we provide a couple of criti-
cal insights that are of general interest for future
work on Crafter. We find that: (1) Simple agents
with tuned hyper-parameters outperform all pre-
vious agents. (2) Feedforward agents can unlock
almost all achievements by relying on the inven-
tory display. (3) Recurrent agents improve on
feedforward ones, also without the inventory in-
formation. (4) Baseline agents fail to generalize
to OOD objects, object-centric agents improve
over them. We will open-source our code.

1. Introduction
Common benchmarks and solid baselines are essential for
developing new models and correctly measuring progress
in machine learning. Datasets in supervised learning such
as ImageNet (Deng et al., 2009) and environments in re-
inforcement learning (RL) such as Atari (Bellemare et al.,
2013), ProcGen (Cobbe et al., 2020) and MineRL (Guss
et al., 2021) have played a crucial role in improving the
existing and creating novel models. Equally importantly, it
is critical to compare with solid, yet simple baselines as the
ones we introduce in this paper, to judge the improvements
offered by novel methods. This is particularly the case in
deep RL, where reproducing existing work is often hard due
to a plethora of difficulties (Henderson et al., 2018).
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Early benchmarks were an important milestone to show that
deep RL methods can learn control from high-dimensional
images (Koutnı́k et al., 2013; Mnih et al., 2015). How-
ever, they focused on a narrow set of tasks and IID setting
between training and evaluation environments, where the
agents could memorize a sequence of actions that leads to
high rewards, without understanding the mechanics of the
world. For better evaluations, the focus has been recently
shifted to closely study the agents’ behaviors through their
performance on carefully designed benchmarks (Osband
et al., 2020) and to learning agents that can generalize to en-
vironments with distributions beyond what they are trained
on (e.g. ProcGen or Crafter).

In this work we focus on Crafter (Hafner, 2021), a recently
introduced open world survival game, that allows tractable
investigation of new agents and their generalization, ex-
ploration and long-term reasoning capabilities. Compared
to other benchmarks, Crafter has a set of advantages that
make it suitable for RL research such as fast iteration speed
(agents can be trained in a few hours on a standard GPU and
a single CPU core), model evaluation by inspecting seman-
tically meaningful achievements the agents unlocked, and
controllable environment objects that facilitates systematic
studies. On the original Crafter environment our experi-
ments show important, previously unpublished insights into
baselines and environment workings. Crucially we establish
solid baselines by showing that simple agents with tuned
hyper-parameters outperform all previous agents. We also
introduce a set of new environments, CrafterOOD, that test
agents’ generalization and robustness to unseen objects, set-
ting the stage for development of fast-adaptation algorithms
such as meta-learning.

Our main findings can be summarised as follows: (1) Simple
agents with tuned hyper-parameters outperform all previous
agents. (2) Feedforward (FF) agents can unlock almost all
achievements by relying on the inventory display (bottom
part of the image in Figure 1a) as a form of a “scratchpad”.
(3) Recurrent agents improve on FF ones, even without the
inventory information. (4) Baseline agents fail to generalize
to out-of-distribution (OOD) objects, object-centric agents
improve over them. Researchers should be aware of these
baseline and environment insights when testing new ideas
on the Crafter environment.
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Figure 1: (a) Crafter gameplay. (b) Self-attention (SA) model with a CLS token. (c) Slot-based cross-attention (CA) model.

2. Environments
Here we briefly summarize essential properties of the
Crafter environment and the newly introduced CrafterOOD
variant. For additional details we refer to (Hafner, 2021).

Crafter. Crafter is an open world survival game for RL
research, whose game dynamics are inspired by popular
game Minecraft. The benchmark is designed to facilitate ex-
isting research challenges, such as strong generalization via
procedural generation, deep exploration via achievements
conditioned on one another, learning from high-dimensional
image observations and sparse rewards that require long-
term reasoning and credit assignment. It facilitates evalu-
ation by unlocking semantically meaningful achievements
and fast iteration speed. In Crafter a unique terrain is gener-
ated for every episode with grasslands, lakes and mountains,
that contain forests, caves, ores and lava. The agent needs to
collect food and water, protect against enemies and collect
resources to craft tools to then unlock all achievements, with
collecting the diamond being the last and the most difficult
one (see example gameplay in Figure 1a). There are 22
achievements and the main evaluation metric is the crafter
score S computed by averaging unlocked achievements in
the log space (to account for differences in their difficulties):
S = exp( 1

N

∑N
i=1 ln(1 + si)), where si ∈ [0, 100] is per-

centage of episodes in which achievement i was unlocked.

CrafterOOD. To stay alive in Crafter, the player eats food
(plants or cows), drinks water and protects itself from en-
emies. To craft tools the player needs to collect resources
such as wood, stone, coal and iron. All these agents and
resources are represented as objects in the environment. We
introduce a set of new environments, CrafterOOD, where
an agent is trained on one distribution of such objects and
then evaluated on another one, possibly one which contains
objects never seen during training. In this way CrafterOOD
facilitates testing agents’ generalization and robustness to
unseen objects and sets the stage for development of fast-
adaptation algorithms such as meta-learning. We introduce
new variants for objects the agent most frequently interacts

with: trees, cows, zombies, stones, coal and skeletons. For a
detailed overview of newly introduced objects see Figure 3.

3. Methods
We base all our methods on the PPO (Schulman et al., 2017)
implementation in the stable baselines (Raffin et al., 2021).

3.1. Linear and Recurrent PPO

PPO learns to map images to actions via policy gradients.
Two FF variants are investigated, that differ by the CNN pol-
icy, and a recurrent version based on LSTM (Wierstra et al.,
2007; Hochreiter & Schmidhuber, 1997) (see Appendix G).

PPO with NatureCNN (PPO-CNN). This baseline is archi-
tecturally identical to the one used in (Hafner, 2021), with
the CNN policy from the DQN paper (Mnih et al., 2015).

PPO with size-preserving CNN (PPO-SPCNN). Size-
preserving CNN (SPCNN) differs from the PPO-CNN base-
line by the CNN architecture. We introduce it as a base-
line for attention-based agents that use SPCNN for “feature
mixing”, inspired by SlotAttention (Locatello et al., 2020).
SPCNN does not have pooling layers, so the resulting output
tensor is of the same height and width as the input image.
The flattened tensor that is fed into a linear layer is much
larger (64x64x64 instead of 8x8x64 for CNN). Therefore,
the policy is also very large (134M parameters).

Recurrent PPO (RecPPO). Crafter is a partially observable
environment. The agent observes only a part of the world
(see Figure 1a). To perform well it needs to remember
the location of resources, e.g. food, mining materials and
where it placed objects for crafting new tools, e.g. table
or furnace. Additionally, some achievements require the
agent to perform a long chain of reasoning (see Figure 4
in (Hafner, 2021) for the complete overview). For these
reasons, we introduce recurrent agents (RecPPO-CNN and
RecPPO-SPCNN) where we use LSTMs as the critic and
the actor networks. These networks in theory entitle the
agent to have memories and can help unlock achievements.
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3.2. Attention-based PPO

Our experiments show that CNN agents fail to general-
ize to OOD environments. Recently, object-centric meth-
ods have successfully been used for OOD generalization in
supervised and unsupervised learning (Greff et al., 2017;
van Steenkiste et al., 2018; Kosiorek et al., 2018; Stanić
& Schmidhuber, 2019; Greff et al., 2019; Locatello et al.,
2020; Stanić et al., 2020; Kipf et al., 2021) and in RL (Wat-
ters et al., 2019; Veerapaneni et al., 2020; Kipf et al., 2020;
Carvalho et al., 2021) though previous work did not consider
procedurally generated open world games. Since Crafter is
composed of objects, we expected these methods to facili-
tate learning and show stronger generalization capabilities.
In this vein, we designed two attention-based agents and
investigated them on CrafterOOD. They take as input either
patches extracted from the image through a size-preserving
CNN (Figure 5) or learn their own representation of an ob-
ject (by attending over the whole input tensor Figure 9). In
Crafter, it is possible to crop patches corresponding to indi-
vidual objects, which is convenient for complexity control
when developing new methods (see Appendix G for details).

PPO with self-attention (PPO-SA) (Figure 1b) learns a
policy via a dot-product self-attention between the input
patches and a learned “CLS” token (a vector initialized
to unit Gaussian parameters and optimized via backprop).
This is similar to using the CLS token in BERT (Devlin
et al., 2018). Let (x1, ..., xk, CLS) ∈ R(k+1)×din be the
input sequence, where k is the number of input patches
and din is their dimensionality. Dot-product self-attention
is defined as Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V ,

where Q ∈ R(k+1)×d, K ∈ R(k+1)×d, V ∈ R(k+1)×d,
are the query, key and value matrices, resulting from linear
mapping of the input sequence onto a space of dimension d.
We add positional embeddings to the input, which enables
learning relative patch positions, e.g. if an enemy is nearby.

PPO with cross-attention networks (PPO-CA) (Figure 1c)
learns a set of vectors, which we refer to as ’slots’. This
idea was proposed in SetTransformer (Lee et al., 2019) and
successfully used for unsupervised learning of objects (Lo-
catello et al., 2020), learning permutation-invariant agents
(Tang et al., 2020; Tang & Ha, 2021) and general perception
modules (Jaegle et al., 2021b;a; Alayrac et al., 2022). PPO-
CA computes attention between queries, keys and values as
in self-attention, with the queries coming from the n learned
slots, so we have Q ∈ Rn×d, K ∈ Rk×d, V ∈ Rk×d,
where k is the number of input patches. In the extreme case,
the patch size is 1, which allows higher expressiveness as
each slot can attend to variable-size or further apart image
regions. After cross-attention, slots are pooled by a mean
operation and then fed into the policy.

Table 1: Scores on Crafter for agents trained on 1M en-
vironment steps. Reported are mean scores and standard
deviations of 10 random seeds. *score from (Hafner, 2021).

METHOD CRAFTER SCORE

PPO* 4.6 ± 0.3
DREAMERV2* 10.0 ± 0.2

PPO-CNN 10.3 ± 0.6
PPO-SPCNN 11.6 ± 0.6
RECPPO-CNN 10.4 ± 0.2
RECPPO-SPCNN 12.1 ± 0.8
PPO-SA 11.1 ± 0.7
PPO-CA 11.0 ± 0.4
PPO-CNN (NO INVENTORY) 6.9 ± 0.4
RECPPO-CNN (NO INVENTORY) 7.7 ± 0.5

4. Experiments and Core Findings
Improved baselines. By tuning a few hyper-parameters,
we find that the simple PPO-CNN baseline outperforms the
model-based DreamerV2 (Hafner et al., 2020) (Table 1).
Surprisingly, even though PPO-SPCNN model has 134M
parameters, PPO is not only able to train it, but it also
outperforms all other variants in both IID and OOD settings
(Tables 1 and 2). This holds for both FF (PPO-SPCNN) and
the recurrent (RecPPO-SPCNN) models. We tried tuning
DreamerV2, but did not improve on results in (Hafner, 2021)
(see Appendix E for hyper-parameters we investigated).

Agents use inventory display as a “scratchpad.” Although
purely FF, PPO-SPCNN is able to unlock almost all achieve-
ments (19/22). This essentially requires the agent to remem-
ber the unlocked achievements (e.g I have an iron pick-axe
now, need to dig a diamond next). However, the fact that the
memory-less FF models unlocked most achievements leads
us to hypothesize that it is using the inventory on the input
image as a “scratchpad.” We test this by training agents
with the inventory removed.The results speak in favor of our
hypothesis, as the performance significantly drops (compare
PPO-CNN and “PPO-CNN (no inventory)” in Table 1).

Recurrent improve over FF agents, even without inven-
tory information. Agent’s reliance on inventory display as
a “scratchpad” lead us to investigating whether recurrent
agents could improve on FF ones by memorizing actions,
map, or unlocked achievements. With observable inventory,
RecPPO-CNN does not improve upon FF variant PPO-CNN
(10.3 vs 10.4 in Table 1). However, when the inventory is
not observable RecPPO-CNN outperforms PPO-CNN (7.7
vs 6.9). This might indicate that the recurrent agents learn to
store achievements in the memory, although not perfectly as
we observe a drop from the case with observable inventory.
Note also that RecPPO-SPCNN outperforms its FF variant
PPO-SPCNN in both IID and OOD settings (Table 2). Here
the inventory is observed, so the largest benefit must arise
from memorizing the map layout.
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Table 2: Scores on CrafterOOD (mean and standard deviations over 10 random seeds) for agents trained for 1M environment
steps. Each setting has two rows, denoting training (e.g. O1−4 : 25%) and evaluation (O1 : 0%, O2−4 : 33%) scores.

TRAIN/EVAL DIST PPO-CNN PPO-SPCNN RECPPO-CNN RECPPO-SPCNN PPO-SA PPO-CA

TRAINING: O1 : 100% 10.3 ± 0.6 11.6 ± 0.6 10.4 ± 0.2 12.1 ± 0.8 11.1 ± 0.7 10.0 ± 0.4
EVALUATION: O1 : 100% 10.3 ± 0.6 11.6 ± 0.6 10.4 ± 0.2 12.1 ± 0.8 11.1 ± 0.7 10.0 ± 0.4

O1−4 : 25% 9.2 ± 0.5 10.7 ± 0.6 10.7 ± 0.6 11.5 ± 0.4 9.7 ± 1.1 9.9 ± 0.6
O1 : 0%, O2−4 : 33.3% 9.2 ± 0.7 11.0 ± 1.1 11.0 ± 1.0 11.6 ± 0.6 9.7 ± 1.2 9.2 ± 0.7

O1 : 52%, O2−4 : 16% 9.9 ± 0.5 11.1 ± 0.7 11.5 ± 1.4 11.1 ± 0.5 9.6 ± 0.8 9.4 ± 0.9
O1 : 0%, O2−4 : 33.3% 10.0 ± 0.7 11.2 ± 1.1 11.4 ± 1.6 11.0 ± 0.5 10.6 ± 0.9 9.9 ± 0.9

O1 : 76%, O2−4 : 8% 9.9 ± 0.4 11.5 ± 0.6 10.7 ± 1.0 11.6 ± 0.6 9.8 ± 0.8 11.3 ± 0.5
O1 : 0%, O2−4 : 33.3% 9.2 ± 0.6 10.5 ± 0.8 10.4 ± 1.0 10.7 ± 0.7 9.2 ± 0.8 10.5 ± 0.7

O1 : 88%, O2−4 : 4% 10.1 ± 0.6 12.2 ± 0.8 11.5 ± 1.4 11.3 ± 0.4 10.5 ± 1 11.2 ± 0.9
O1 : 0%, O2−4 : 33.3% 9.1 ± 0.7 10.2 ± 0.7 10.1 ± 1.3 9.8 ± 0.8 9.4 ± 1.3 9.4 ± 1.0

O1 : 94%, O2−4 : 2% 10.9 ± 0.7 12.0 ± 0.8 11.4 ± 1.2 11.7 ± 0.6 10.5 ± 0.6 10.8 ± 1.1
O1 : 0%, O2−4 : 33.3% 8.6 ± 0.7 9.2 ± 1.1 9.1 ± 1.4 9.8 ± 0.8 9.9 ± 0.8 8.8 ± 0.9

O1 : 97%, O2−4 : 1% 10.5 ± 0.6 11.8 ± 0.7 11.9 ± 1.4 12.0 ± 0.3 10.3 ± 1.1 10.8 ± 0.6
O1 : 0%, O2−4 : 33.3% 7.3 ± 0.5 7.7 ± 1.0 8.2 ± 1.0 8.6 ± 1.0 9.3 ± 0.8 8.8 ± 0.8

O1 : 100%, O2−4 : 0% 10.5 ± 0.6 11.8 ± 0.6 10.7 ± 0.2 11.9 ± 0.8 11.1 ± 1.3 10.7 ± 0.6
O1 : 0%, O2−4 : 33.3% 7.3 ± 0.5 7.7 ± 0.9 5.8 ± 0.2 6.8 ± 1.0 8.0 ± 1.2 7.6 ± 0.5

CrafterOOD generalization. We generate a collection
of increasingly difficult adaptation scenarios. Agents are
trained and evaluated on progressively more distinct environ-
ments. Environments contain four different object variants
for trees, cows, iron, stones, zombies and skeletons. The set-
tings differ in object distributions in training and evaluation
environments. For example, the IID case corresponds to ob-
serving only the first object variant O1 during training and
evaluation (first two rows in Table 2). Starting from train-
ing with uniformly distributed objects (O1−4 = 25%) we
make generalization progressively more difficult by skew-
ing the training distribution towards the first object. The
evaluation environment always contains only the last three
objects uniformly distributed. In Table 2 we see that up
to the point of observing evaluation objects 16% of the
time agents generalize fairly well (see also Figure 4 in Ap-
pendix B). Decreasing the percentage of evaluation objects
further, the performance of all agents consistently drops.
Finally, when trained only on the first object (O1 = 100%)
the agent relies on pure chance or interacting with objects
that do not change (e.g. water, iron). Our experiments
show that the object-centric agents PPO-SA and PPO-CA
match the vanilla PPO agents on the IID and easy OOD
generalization cases (the last two columns in Table 2). In
the most difficult OOD generalization cases though (the
last three pairs of rows in Table 2), PPO-SA and PPO-CA
show better generalization compared to the PPO-CNN and
PPO-SPCNN. To the best of our knowledge, this is the first
time cross-attention-based methods (e.g. SlotAttention- and
Perceiver-like) are applied to an open-world RL survival
game, and we found their vanilla versions not to work out-of-
the-box. To achieve good level of performance we analyzed

their components and present our findings in Appendix F.
This analysis led us to converge to an architecture with a
single cross-attention over the input, no latent self-attention,
no layer normalization, no residual connections and (unlike
SlotAttention) no competition between the slots via softmax
over queries. Additionally, these methods let us inspect their
attention, making them interpretable and potentially easier
to build on in future work (see Appendix C and D).

5. Conclusion and Discussion
For research on new machine learning methods and proper
progress measuring, it is crucial to start from strong base-
lines. We reported a couple of important observations from
our experiments with the Crafter baselines. These insights
indicate that a systematic study of baselines and environ-
ment workings (e.g. inventory acting as a “scratchpad”) is
needed. Furthermore, we introduced CrafterOOD, an envi-
ronment variant that is OOD in objects appearance and show
that when the evaluation environment contains unseen ob-
jects the baseline agents fail to adapt, but the object-centric
ones improve over them. This might be a fruitful envi-
ronment for developing fast-adaptation and meta-learning
agents. Also it would be interesting to consider other OOD
variants of Crafter, such as ones with objects of varying
sizes or frequencies of appearance. We see Crafter as a
good candidate to explore all these direction as one has con-
trol over the environment configuration, can inspect models
visually and have fast iteration cycles with our solid base-
lines. We hope our findings will be of interest and taken
into consideration for future work on Crafter.
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A. OOD environment textures

Player Plant Cow Zombie Skeleton Arrow

Water Sand Grass Tree Path Stone

Coal Iron Diamond Lava Table Furnace

Figure 2: Original Crafter objects. Figure from (Hafner, 2021).

TreeV1 CowV1 ZombieV1 StoneV1 CoalV1 SkeletonV1

TreeV2 CowV2 ZombieV2 StoneV2 CoalV2 SkeletonV2

TreeV3 CowV3 ZombieV3 StoneV3 CoalV3 SkeletonV3

TreeV4 CowV4 ZombieV4 StoneV4 CoalV4 SkeletonV4

Figure 3: In CrafterOOD there are four variants of objects for trees, cows, zombies, stone coal and skeletons.
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B. CrafterOOD performance
In Figure 4 we provide heatmap of the CrafterOOD scores previously reported in Table 2.
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Figure 4: Scores on CrafterOODnum for agents trained for 1M environment steps. Mean over 10 random seeds are
reported. For standard deviations see Table 2. Each setting has two rows, denoting scores in training (e.g. 25, 25, 25, 25 for
O1−4 : 25%) and evaluation (0, 33, 33, 33, for O1 : 0%, O2−4 : 33.3%) environments.
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C. Attention Visualization in Self-Attention (SA)
In this section we visualize what the CLS token attends. Note that all the below visualizations stem from a single agent.
They are representative to what we observed in most episodes of a trained agent.

Figure 5: Top row: input images. Bottom row: visualized attention by it’s intensity. Horizontally are episode steps. The
agent collects resources. The agent notices a tree in its vicinity. Through the frames it focuses consistently on the tree and
collects it. In the final frame the agent attends to the (newly crafted) wood resource (sequence continued in Figure 6).

Figure 6: Top row: input images. Bottom row: visualized attention by it’s intensity. Horizontally are episode steps. Building
a table (continued from Figure 5). After collecting one tree, the agent needs to collect another one to build a tree. It
spots more trees in it’s vicinity, goes to them, collects them and builds a table, such that it can build weapons on the table
(continued in Figure 7.
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Figure 7: Top row: input images. Bottom row: visualized attention by it’s intensity. Horizontally are episode steps. Crafting
weapons (continued from Figure 6). Once it has built a table, the agent needs to collect more resources to craft weapons. It
collects the two nearby trees and uses them to build a wooden sword and a wooden pickaxe (shown in the bottom inventory).
It can later use these weapons to defend against enemies, collect stones and collect coal.

Figure 8: Top row: input images. Bottom row: visualized attention by it’s intensity. Horizontally are episode steps. The
agent defends against enemies. During the night (the reason why the frame color is darker), a zombie enters the scene. In
the first frame, the agent does not attend to the zombie, as it is still far away. As the zombie gets closer, it attends more and
more to it.
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D. Learned Attention Visualization in Cross-Attention (CA)
In Figure 9 we visualize the learned attention patterns (not fixed to patches, but any slot can attend over the entire input
image). We observe more numerous, but smaller attention patterns compared to patch-based attention that is typically
focused on 2-5 regions in the image. Although in theory more powerful (because they can choose to ignore most parts of the
image, or even the object at hand), in practice learned attention models underperform the patch-based ones. We suspect the
reason could be that the learned attention agents first need to find out what an object actually is, whereas patch-based ones
have a more “guided” learning process. We speculate that greater gains of learned attention would be in scenarios with
objects of varying sizes, in which case a fixed grid is too rigid representation.

Figure 9: Top row: input images. Bottom row: visualized attention by it’s intensity. We find that the learned attention also
attends to the salient objects in the scene: zombies (1st, 3rd and 5th columns), trees (2nd, 3rd and 4th columns), resources
(water overall) and the inventory. We observe more numerous, but smaller attention patterns than in patch-based attention,
which is typically focused on 2-5 regions in the image.
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E. Hyper-parameter Configurations

Table 3: PPO hyper-parameters we searched over (Sweep) and final values used in our experiments for FF and recurrent
(Rec) agents. For most hyper-parameters we used default values (that were tuned for Atari in previous work), except for the
bolded ones.

HYPER-PARAMETER FINAL FF FINAL REC DEFAULT SWEEP

LEARNING RATE 0.0003 0.0003 0.0003 [0.001, 0.0005, 0.0003, 0.0001, 0.00005]
BATCH SIZE 64 128 64 [16, 32, 64, 128]
NUMBER OF ROLLOUTS 2048 4096 2048 [1024, 2048, 4096]
NUMBER OF EPOCHS 4 4 10 [3, 4, 5, 7, 10]
DISCOUNT FACTOR 0.95 0.95 0.99 [0.95, 0.97, 0.99, 0.999]
GAE λ 0.65 0.65 0.95 [0.6, 0.65, 0.7, 0.8, 0.9, 0.95]
CLIP RANGE 0.2 0.2 0.2 [0.1, 0.2, 0.3]
MAX GRAD NORM 0.5 0.5 0.5 [0.1, 0.3, 0.5, 1.0]

Table 4: Dreamer hyper-parameters we searched over.

HYPER-PARAMETER SWEEP

BATCH SIZE 16, 32, 64
DISCOUNT FACTOR [0.9, 0.95, 0.99, 0.999]
ACTOR ENTROPY [0.003, 0.001, 0.0003, 0.0001, 0.00003]
KL LOSS SCALE [0.1, 0.3, 1, 3]
REWARD LOSS SCALE [0.5, 1, 2]
DISCOUNT LOSS SCALE [0.5, 1, 2]
KL BALANCE [0.5, 0.8, 1, 2]
DISCOUNT λ [0.8, 0.9, 0.95]
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F. Cross-Attention Network Ablation
In this section we present an ablation study on the object-centric PPO-CA agent in Table 5. We found vanilla versions
of methods based on cross-attention (SlotAttention (Locatello et al., 2020) and Perceiver (Jaegle et al., 2021b)) not to
work out of the box. For example, these methods typically employ LayerNorm and residual MLPs, but in Table 5 we
can see that the variant using these “CA + Residual MLP + LayerNorm” underperforms. Also any of these two elements
included individually (“CA + Residual MLP” and “CA + LayerNorm”) did not improve performance. Moreover, introducing
competition over slots (via a softmax over queries) “CA + Slot Competition” (akin to SlotAttention) also hurt the downstream
performance. This analysis led us to converge to an architecture that uses a single cross-attention over the input image, with
no latent self-attention, no layer normalization, no residual connections and (unlike SlotAttention) no competition between
the slots via softmax over queries.

We also observed that there is a sweet spot of number of heads and number of slots where both have value 8. Although
we cannot say what the direct relationship between these network parameters and the final RL performance is, we can
speculate that the higher number of slots lets each of them to specialize in parts (objects) of the input image, and higher
number of heads allows for operation specialization for each of the heads. Finally, we observe that larger patch size (with the
appropriate stride) improves performance. The learned attention over the whole input image “CA, Patch Size=1, Stride=1”
does not perform as well as attention with larger patches. Although in theory more powerful as it can attend to varying
object sizes, this variant needs first to learn what parts of the image belong together into a single object. In its current form,
Crafter objects are all of equal size, so the patches can correspond to these. We suspect attention over the whole image
(patch size of 1) would be beneficial if we would have objects with varying sizes.

Table 5: Cross-attention (CA) Network Ablation.

VARIANT CRAFTER SCORE

CA 10.0 ± 0.4
CA + RESIDUAL MLP 7.3 ± 0.4
CA + LAYERNORM 4.1 ± 0.3
CA + RESIDUAL MLP + LAYERNORM 3.1 ± 0.6
CA + SLOT COMPETITION 7.1 ± 0.3

CA, NUMBER OF SLOTS=1 8.2 ± 0.9
CA, NUMBER OF SLOTS=2 7.8 ± 0.4
CA, NUMBER OF SLOTS=4 8.7 ± 0.7
CA, NUMBER OF SLOTS=8 10.0 ± 0.4
CA, NUMBER OF SLOTS=16 9.1 ± 0.9

CA, NUMBER OF HEADS=1 6.6 ± 0.5
CA, NUMBER OF HEADS=2 7.3 ± 0.9
CA, NUMBER OF HEADS=4 8.0 ± 0.6
CA, NUMBER OF HEADS=8 10.0 ± 0.4
CA, NUMBER OF HEADS=16 7.2 ± 0.8

CA, PATCH SIZE=1, STRIDE=1 6.9 ± 0.9
CA, PATCH SIZE=8, STRIDE=8 7.2 ± 0.4
CA, PATCH SIZE=12, STRIDE=8 8.7 ± 0.7
CA, PATCH SIZE=12, STRIDE=12 8.9 ± 0.7
CA, PATCH SIZE=16, STRIDE=8 6.2 ± 0.5
CA, PATCH SIZE=16, STRIDE=16 10.0 ± 0.4
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G. Network Configurations

Table 6: PPO-CNN: baseline agent with the CNN from DQN (Mnih et al., 2015).

Feature Extractor

8× 8 conv, 32 ReLU units, stride 4
4× 4 conv, 64 ReLU units, stride 2
3× 3 conv, 64 ReLU units, stride 1
Flatten
Linear, 512 ReLU units.

Action Network

Linear, 17 units.

Value Network

Linear, 1 units.

Table 7: PPO-SPCNN: agent with the size-preserving CNN.

Feature Extractor

5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
Flatten
Linear, 512 ReLU units.

Action Network

Linear, 17 units.

Value Network

Linear, 1 units.
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Table 8: PPO-SA: agent with the self-attention module.

Feature Extractor

5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
Split into 8× 8 patches and flatten the patch grid

Self-Attention Network

Learned CLS token of 256 size.
Slot-wise projection: Linear, 256 units.
Query map: Linear, 256 units.
Key map: Linear, 256 units.
Values map: Linear, 256 units.

Action Network

Linear, 17 units.

Value Network

Linear, 1 units.

Table 9: PPO-CA: agent with the cross-attention module.

Feature Extractor

5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
Split into 16× 16 patches and flatten the patch grid

Self-Attention Network

Learned slots 8× 256 size.
Query map: Linear, 256 units.
Key map: Linear, 256 units.
Values map: Linear, 256 units.

Action Network

Linear, 17 units.

Value Network

Linear, 1 units.
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Table 10: RecPPO-CNN: recurrent agent with an LSTM and CNN from DQN (Mnih et al., 2015).

Feature Extractor

8× 8 conv, 32 ReLU units, stride 4
4× 4 conv, 64 ReLU units, stride 2
3× 3 conv, 64 ReLU units, stride 1
Flatten
Linear, 512 ReLU units.

Action Network

LSTM, 256 units.
Linear, 17 units.

Value Network

LSTM, 256 units.
Linear, 1 units.

Table 11: RecPPO-SPCNN: recurrent agent with an LSTM and size-preserving CNN.

Feature Extractor

5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
5× 5 conv, 64 ReLU units, stride 1, padding 2
Flatten
Linear, 512 ReLU units.

Action Network

LSTM, 256 units.
Linear, 17 units.

Value Network

Linear, 256 units.
Linear, 1 units.


