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Abstract
Federated Learning (FL) enables data owners to
train a shared global model without sharing their
private data. Unfortunately, FL is susceptible to
an intrinsic fairness issue: due to heterogeneity in
clients’ data distributions, the final trained model
can give disproportionate advantages across the
participating clients. In this work, we present
Equal and Equitable Federated Learning (E2FL)
to produce fair federated learning models by pre-
serving two main fairness properties, equity and
equality, concurrently. We validate the efficiency
and fairness of E2FL in different real-world FL
applications, and show that E2FL outperforms ex-
isting baselines in terms of the resulting efficiency,
fairness of different groups, and fairness among
all individual clients.

1. Introduction
Federated Learning (FL) is an emerging AI technology
where clients collaborate to train a shared model, called
the global model, without explicitly sharing their local train-
ing data. FL training involves a server which collects model
updates from selected FL clients in each round of training,
and uses them to update the global model. In FL, the perfor-
mance of the global model varies across the clients due to
heterogeneity in the data that each client owns. This concern
is called representation disparity (Hashimoto et al., 2018)
and results in unfair performance gaps for the participating
clients. That is, although the accuracy may be high on av-
erage, some tail user whose data distribution differs from
the majority of the clients is likely to receive a much lower
performance compared to the average.

In this work, we look at FL fairness with two different lenses:
a) Equality: whose goal is providing similar performances
for all individual clients; b) Equity: whose goal is provid-
ing similar performances across all groups of clients (i.e.,
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groups of majority and minority), where a group is defined
as a set of clients with similar data distributions. The key
question we try to answer is: Can we design an efficient
federated learning algorithm that achieves both equality
and equity concurrently?

Due to the heterogeneity in clients’ data distributions, one
single model cannot represent all the clients equally. There
is a trade-off between training one global model and mul-
tiple global models; if we train one global model all the
clients can utilize each other’s knowledge, however it will
be biased towards whom that have the majority of the pop-
ulation. On the other hand, if we train multiple models
(e.g., as in IFCA (Ghosh et al., 2020), HypCluster (Mansour
et al., 2020) and MOCHA (Smith et al., 2017)), we improve
fairness, but each global model will lose the knowledge
from excluded clients. To get the best of both worlds, we
present Equal and Equitable Federated Learning (E2FL), a
novel FL algorithm to achieve both equality and equity. In
E2FL, we train multiple global models, but in each round
we combine all of the models into one global model to take
advantage of the knowledge of all client groups.

2. Fairness Using Two Lenses: Equity and
Equality
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Figure 1. An example showing two different FL systems with two
goals: equality (on left) and equity (on right).

Figure 1 shows an example of two FL systems where six
clients want to learn a global model for prediction of hand-
written digits. These clients have three handwriting styles:
(A) normal handwriting style, (B) a little bit rotated hand-
writing, and (C) 180 degree rotated handwriting (upside-
down). We consider each model update (θqu for client u in
group q) has the same effect on updating the global model,
so each client update is like a vote. In this example, group
A has the majority of the voters, and group B and C are in
minorities. The left part of figure shows an FL in which
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the goal is providing equality, so we give same chance (one
vote) to each client to change the final model by an aggre-
gation such as averaging (e.g., what we have in FedAvg).
In this setting, the majority group with higher population
(group A) has more influence on the final vote. On the other
hand, the right part shows an FL in which the goal is pro-
viding equity. In this setting, first we aggregates the votes
inside each group to find the group votes (θAg , θ

B
g , θCg ), and

then aggregate the groups votes to produce the final model.
In this setting, each client has the same chance (one vote)
to influence its own group vote, and finally each group of
voters have the same chance (one vote) to influence the final
vote. We define two aspects of fairness in FL as follows:

Definition 1 (Equality: User-level Fairness): Trained
global model θ is more equalized when its performance is
more uniform across the individual clients participating in
FL, i.e., when STD{Fu(θ)}u∈[N ] is smaller where STD{.}
is the standard deviation, and Fu(.) denotes the local ob-
jective function of client u from N clients. Existing fair
federated learning literature (Li et al., 2020; 2021; Smith
et al., 2017; Hashimoto et al., 2018; Zhang et al., 2021;
Mohri et al., 2019; Yu et al., 2020) use this definition in
their designs.

Definition 2 (Equity: Group-level Fairness): Trained
global model θ is more equitable when its perfor-
mance is more uniform across the groups, i.e., when
STD{Avg{Fu(θ)}u∈[q]}q∈[Q] is smaller where AVG{}u∈[q]

denotes the average of performances for all the individual
clients in the qth group, and there are Q total groups.

3. E2FL: Design
The key insight used in E2FL is converting the problem of
model weight optimization (in standard FL) to the problem
of ranking model edges (a technique recently proposed in
(Mozaffari et al., 2021)). Therefore, in each round of E2FL
training, the clients and the server exchange rankings for
the edges of a randomly initialized neural network (called
supernetwork), as opposed to exchanging parameter gra-
dients. More specifically, each E2FL client computes the
importance of the edges within a randomly initialized neural
network on their local data, represented by a ranking vector.
Next, E2FL server uses a majority voting mechanism to
aggregate the collected local rankings into multiple global
rankings based on the index of group they belong to. Finally,
the E2FL server aggregates all the group rankings into one
global ranking for next round of training. Applying the
majority vote on the group rankings instead of all the local
rankings helps E2FL enforce equity because each group has
an equal vote to influence the global model. To provide
equality in E2FL, if a client wants to use the model in a
downstream task, they use their own group global ranking,
instead of the global ranking, which is a better representa-
tion model for the client and its groupmates.

Algorithm 1 Equal and Equitable Federated Learning
(E2FL) Algorithm.

Input: number of FL rounds T , number of local epochs E,
number of selected users in each round n, number of groups Q,
seed SEED, learning rate η, subnetwork size k%
θs, θw ← Initialize random scores and weights of global model
θ using SEED
R1

g ← ARGSORT(θs) {Sort the initial scores and obtain initial
global rankings}
for t ∈ [1, T ] do

U ← set of n randomly selected clients out of N total clients
for u in U do

θs, θw ← Initialize scores and weights using SEED
q = IDENTITY(θw,M t

g,q∈[Q], Q,Dtr
u ) {Identity estima-

tion using binary masks of different groups}
θs[Rt

g] ← SORT(θs) {Reorder the scores based on the
global ranking}
S ← Edge-PopUp(E,Dtr

u , θw, θs, k, η) {Train local
scores on the local training data}
Rt

u,q ← ARGSORT(S) {Ranking of the client u with esti-
mated group ID: q}
return Rt

u,q

end for
Rt+1

g,q∈[Q] ← VOTE(Rt
u∈U,q∈[Q]) {Majority vote aggrega-

tion inside each group}
Rt+1

g ← VOTE(Rt+1
g,q∈[Q]) {Majority vote aggregation

among all the groups}
end for
function Vote (R{u∈U})

V ← ARGSORT(R{u∈U}) {Reputation of each edge in each
local ranking}
A← SUM(V ) {Sum the reputations}
return ARGSORT(A) {Order of the reputations}

end function

Our ranking-based FL training enables attractive fairness
properties, as shown through our experiments, which is intu-
itively due to the following reason: In rank-based federated
learning, each client computes a local ranking (i.e., a permu-
tation of integers ∈ [1, d] where d is the layer size), so each
local ranking has a fixed norm (i.e.,

√
12 + 22 + ...+ d2).

This fixed norm of local updates makes the rank aggregation
more fair as each local ranking has the same impact on the
aggregated global ranking. On the other hand, in standard
FL, when the server aggregates the local model updates into
the global model, each local update has a different impact
on the global model (because of their different l2 norms).
For example in FedAvg, the server averages the parameter
updates for the d dimensions, therefore a large parameter
update has more influence on the final average compared to
a small parameter update.

In E2FL, different FL users gather together to learn a global
model, but each one of them belong to a different group
(which could be considered as known or unknown). In
this section we assume the clients know their group IDs,
and we defer our identity inference methods (using features
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of rankings) to the full version (Mozaffari & Houmansadr,
2022), when the groups are unknown. Algorithm 1 describes
E2FL training. In E2FL, the server trains multiple global
rankings, each one belong to a different group. These global
group rankings are showing different orders of importance
of same supernetwork for different groups from least to most
important edges. Each client participates in training of their
group model by sending the local ranking they have. For
aggregation, the server performs a majority vote among the
local rankings (local votes) in each group, and then performs
another majority vote among global group rankings (group
votes) to find the global model for next round (i.e., global
ranking that clients will start their training for next E2FL
round.)

We detail a round of E2FL training and depict it in Figure 2,
where we use a supernetwork with six edges ei∈[0,5] to
demonstrate a single E2FL round and consider six clients
Cj∈[1,6] from three groups (handwriting style A, B, C) who
aim to find a subnetwork of size k=50% of the original
supernetwork.

e0

e3

e5
e4

e1

e2

Client 2:

Client 3:

Server: Initialization

v

v

1

Clients: reordering2a

e0(0.4)

e3(0.3)

e5(0.5)
e4(1.2)

e1(0.7)

e2(0.2)

Clients: training2b

Client 1:

3a Server: Vote  
inside each group

e5

e3

e4

3b Server: Vote  
between groups

Hand Writing 

 Style A

Client 5:

Client 4:

Hand Writing 

 Style B

Client 6:

Hand Writing 

 Style C

v

v

e5

e3

e1

e5

e4
e1

e5

e3

e2

Hand Writing 

 Style A

Hand Writing 

 Style B

Hand Writing 

 Style C

Figure 2. A single E2FL round with six clients from three groups
and network of 6 edges. Please note that, all the operations in
E2FL training are performed in a layer-wise manner.

Server: Initialization Phase (Only for round t = 1) :
In the first round, the E2FL server chooses a random seed
SEED to generate initial random weights θw and scores θs

for the global supernetwork θ; note that, θw, θs, and SEED
remain constant during the entire E2FL training. Next, the
E2FL server shares SEED with E2FL clients, who can then
locally reconstruct the initial weights θw and scores θs using
SEED. Figure 2- 1 depicts this step. Recall that, the goal
of E2FL training is to find the most important edges in
θw without changing the weights. At the beginning, the

E2FL server finds the global rankings of the initial random
scores , i.e., R1

g = ARGSORT(θs). We define rankings
of a vector as the indices of elements of vector when the
vector is sorted from low to high, which is computed using
ARGSORT function.

Clients: Calculating the ranks (For each round t) :
In the tth round, E2FL server shares the global rankings
Rt

g with the clients. Each of the clients locally recon-
structs the weights θw’s and scores θs’s using SEED. Then,
each E2FL client reorders the random scores based on
the global rankings, Rt

g. We depict this in Figure 2- 2a .
For instance, the initial global rankings for this round are
Rt

g = [2, 3, 0, 5, 1, 4], meaning that edge e4 should get the
highest score (s4 = 1.2), and edge e2 should get the lowest
score (s2 = 0.2).

Next, each of the clients uses reordered θsu and finds a sub-
network within θw using edge-popup algorithm (Ramanujan
et al., 2020); to find a subnetwork, they use their local data
and E local epochs. Note that, each iteration of edge-popup
algorithm updates the scores θsu. Then client u computes
their local rankings Rt

u using the final updated scores and
ARGSORT(.), and sends Rt

u,q to the server where q is the
group identifier. We defer our group inference methods we
propose to full version (Mozaffari & Houmansadr, 2022).
Figure 2- 2b shows, for each client, the local rankings they
obtained after finding their local subnetwork. For example,
rankings of client C1 are Rt

1,A = [4, 0, 2, 3, 5, 1], i.e., e4 is
the least important and e1 is the most important edge for C1.
Considering desired subnetwork size to be 50%, C1 uses
edges {3,5,1} in their final subnetwork in this round.

Server: Majority Vote (For each round t) : The
server receives all the local rankings of the clients, i.e.,
{Rt

1,A, R
t
2,A, R

t
3,A, R

t
4,B , R

t
5,B , R

t
6,C}. Then, it performs

a majority vote over all the local rankings inside each group,
i.e., {A,B,C}. We depict this in Figure 2- 3a . Note that,
for group q, the index i in Rt+1

g,q represents the importance
of the edge ith for clients in group q. For instance, in Fig-
ure 2- 3a , rankings of A are Rt

g,A = [0, 2, 4, 5, 3, 1] and
rankings of B are Rt

g,B = [0, 2, 3, 1, 4, 5], hence the edge
e1 is the most important edge for group A, while the edge e5
is the most important edge for group B. Next, the server per-
forms a majority vote over all the group rankings of different
groups {Rt+1

g,A , Rt+1
g,B , Rt+1

g,C} to find the global ranking Rt+1
g .

We depict this in Figure 2- 3b .

E2FL provides both equity and equality. E2FL provides
both equity and equality. In this algorithm, at the final
round of the learning, instead of using the global ranking,
each group uses its own group global rankings. The global
rankings can provide better performances to the majority
groups as they have access to more training data they can
train better group global ranking. For example, a client
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of handwriting style A will use f(x, θw
⊙

M t
g,A) in their

downstream classification task, where M t
g,A is the learned

binary mask for group A at FL round t, and θw is the random
weights (initialized randomly and kept fixed), and x is the
test input. Please note that in E2FL and its variants, M t

g,A

is the supermask trained for group A where for top k% of
the top rankings of group ranking Rt

g,A, we put 1’s and we
set other masks to 0’s.

E2FL when the group IDs are unknown. In many appli-
cations, clients may be unaware of their protected attributes
(i.e., the group they belong to). We propose one approach on
server-side and three approaches on client-side for inferring
group IDs. To infer the group IDs on the server-side, we
propose to use a rank clustering approach to cluster clients
into groups. We also design three approaches on client-side
to infer the group IDs, where the clients can pick the right
group based on their local training data. Using rankings
allows us to exchange only the binary masks produced by
each group ranking which lowers the communication cost
compared to prior works. Each client can pick the right
binary mask based on three approaches. First, each client
can pick the binary mask that produces the smallest loss.
Binary masks also enable the clients to find their matching
group by a new novel idea from (Wortsman et al., 2020),
where clients can infer the group ID using gradient based
optimization to find a linear superposition of learned masks
which minimizes the output entropy. We propose two vari-
ants of this approach, one based on a binary search and the
other using OneShot optimization.

4. Experiments
FairMNISTPerm: To measure the equity and equality, we
release a new dataset for fairness experiments in FL appli-
cation. We note that creating different data distributions by
manipulating standard datasets such as MNIST has been
widely adopted in the continual research community (Good-
fellow et al., 2013; Kirkpatrick et al., 2017; Lopez-Paz &
Ranzato, 2017), therefore, we create this dataset by rotating
the images in MNIST for each group. Figure 3 (a) shows
image samples in each group, and Figure 3(b) shows the
number of clients in each group. In this dataset, we assign
same number of data samples to 1000 clients with 10 dif-
ferent data distributions (with different number of users in
each group). There are majority groups with large number
of clients, e.g., G6 with 257 clients, and there are minority
groups with small number of clients, e.g., G1 with 8 clients.
In this dataset G1 and G10 are minorities, and G5 and G6
are in majorities. We defer more experimental results on
FEMNIST (Caldas et al., 2018) and Adult Census Income
Dataset (Kohavi et al., 1996) to the full version (Mozaffari
& Houmansadr, 2022).

In Figure 3 (c), we compare the performance of different FL
algorithms (Li et al., 2020; Ghosh et al., 2020; McMahan
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(c) Final test loss for all the groups on FairMNISTRotate

Figure 3. FairMNISTPerm: a new dataset to investigate equality
and equity in FL application.

et al., 2017) by plotting the test loss of the global trained
model for all the ten groups. In addition to the results
of E2FL, which is the performance of the global ranking
trained for each group, we report the results of the global
model as E2FL (GM). Our experimental results on FairM-
NISTPerm show that: (1) clients have motivation to par-
ticipate in FL. All the groups including minorities and ma-
jorities get benefit by participating in an FL framework. (2)
FedAvg gives more attention to majority groups. Clients
from majority groups can get more benefit by participating
in FedAvg as they have more chance to be selected in each
round, so they have more impact on the global model. Fe-
dAvg can achieve 97.61% mean test accuracy for all the
individual clients (i.e., user-level fairness), but the mean of
accuracies for groups is low as 93.89% which shows that
this learning paradigm is focusing on user-level fairness
more than on group-based fairness (equity). (3) q-FFL im-
proves equality while worsens equity. q-FFL is helping
the majority groups by ignoring the minorities. q-FFL is a
user-level fairness framework, so it makes the results more
fair compared to FedAvg in equality; however it produces
more unfair results compared to equity. (4) Training 10
different FLs (i.e., IFCA) is not the best situation for the
minorities. It is important that all the groups in FL share
their knowledge. Figure 3 (c) shows that groups G1, G2,
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and G10 cannot get similar benefits by participating in IFCA
since there is no shared knowledge, and these clients have
access to limited data. (5) E2FL is providing equality and
equity. While q-FFL reduces the variance of accuracies for
all the clients by 4% while it increases the variance between
groups by 81% compared to FedAvg. On the other hand our
algorithm can reduce both variance of clients and groups by
93% and 95% respectively compared to FedAvg.
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