A Decision Metric for the Use of a Deep Reinforcement Learning Policy

Christina Selby *' Edward Staley * '

Abstract

Uncertainty estimation techniques such as those
found in |Osband et al.| (2018) and Burda et al.
(2019) have been shown to be useful for efficient
exploration during training. This paper demon-
strates that such uncertainty estimation techniques
can also be used as part of a time-series based
methodology for out-of-distribution (OOD) detec-
tion for an off-line model-free deep reinforcement
learning policy. In particular, this paper defines
a “decision metric” that can be utilized for de-
termining when another decision-making process
should be used in place of the deep reinforcement
learning policy.

1. Introduction

Deployment of deep reinforcement learning policies in
safety-critical systems will require the ability to assure a
policy’s performance. One aspect of this problem is the
ability to observe change between the training environment
and the operational environment. This is often called out-
of-distribution (OOD) detection. Given an OOD metric, a
decision rule based on risk-tolerance can be defined so that
a trusted controller (human or otherwise) can replace the
deep RL policy when appropriate. The OOD metric needs
to be interpretable, so that the decision rule does not have to
be application specific and is well-understood.

This paper uses an out-of-distribution metric derived from a
modification of Random Network Distillation (Burda et al.,
2019). The application for Random Network Distillation
(RND) in the previous work was for efficient exploration
in the training of a deep RL policy. The presented applica-
tion uses a modified version of RND in order to provide a
time-series of noisy un-interpretable OOD metrics that are
processed in order to produce a smoother and interpretable

!Johns Hopkins Applied Physics
MD. Correspondence to: Christina
Edward Staley <ed-

“Equal contribution
Laboratory, Laurel,
Selby <christina.selby @jhuapl.edu>,
ward.staley @jhuapl.edu>.

ICML 2022 Workshop on Responsible Decision Making in Dy-
namic Environments, Baltimore, Maryland, USA, 2022. Copyright
2022 by the author(s).

metric via Kalman filtering.

We utilize Meta Arcade (Staley et al), 2021) for training
our models and creating OOD environments for testing our
methodology. Meta Arcade is a recently developed tool to
easily define and configure custom 2D arcade games that
share common visuals, state spaces, action spaces, game
components, and scoring mechanisms. In particular, we
present experimental results where a deep RL policy for
Meta Arcade Breakout is trained in a default environment,
but the policy is deployed in versions of Breakout with new
background colors.

Deployment of a deep RL policy in a safety-critical appli-
cation will require assurance beyond confirming than that
the deployment domain is in distribution. Further work will
need to be completed in order to address other sources of
uncertainty. The presented methodology can be one compo-
nent in a suite of tools designed to determine if the use of a
deep RL policy is appropriate for a given environment and
input state.

1.1. Related Work

The uncertainty estimation techniques used for deep RL un-
certainty estimation have been motivated by work in uncer-
tainty estimation for deep neural networks, or derived from
work in efficient exploration during the training of deep RL
policies. In|Liitjens et al.| (2019), |[Kahn et al.|(2017), and
Hoel et al|(2020) techniques such as MC-Dropout (Gal &
Ghahramani|, 2016), Bootstrapping (Efron, [1986), (Efron
& Tibshiranil [1994)), and Randomized Prior Functions (Os-
band et al., 2018)) are used in order to obtain uncertainty
estimates that are utilized for applications in autonomous
driving. In|Kahn et al.|(2017), the uncertainty estimates are
used as input to a collision-avoidance prediction capability
so that collisions are avoiding during online training of the
RL policy. In|Liitjens et al.[|(2019), collision avoidance is
also the goal and the uncertainty estimates are used as in-
put into a Model Predictive Controller (MPC) for selecting
the safest action with minimal cost. Both of these colli-
sion avoidance applications utilize model-based RL and the
policies are being updated online. The concept of using
uncertainty estimation as input into a decision rule can be
found in Hoel et al.|(2020), where an uncertainty estimate
for a given action is calculated and compared to a safety

A Decision Metric for the Use of a Deep Reinforcement Learning Policy

threshold. This safety threshold is determined by an analysis
of test episodes within the training distribution. The value
of the safety threshold is directly tied to the training, and
thus not interpretable as a stand-alone value. The decision
is made at each timestep, using only the uncertainty value at
that timestep. Our work will use a time-series of uncertainty
estimates to inform an OOD metric that has a value that has
a statistical interpretation independent of environment.

2. Methodology
2.1. Modified Random Network Distillation

Random network distillation (RND) (Burda et al.,[2019) is
a technique to encourage exploration during the training
of deep reinforcement learning policies. In RND, a frozen
“prior”, a randomly initialized fully connected deep neural
network, is defined as a function over the state space. A
“distiller” network is then trained to predict the vector-valued
output of this prior for visited states, by using the mean-
squared error between the two networks as a loss function.
The output of the RND is the difference between the prior
and the distiller. Therefore, novel states have a non-zero
RND output.

In this work, we re-purpose RND as an uncertainty mech-
anism to be used during deployment rather than during
training. If a trained RL agent is deployed in a setting that
is out-of-distribution from its training regime, we hypoth-
esized that the RND will output values much further from
zero than what is typical on training data. This revised
RND training approach is described in section 2.2] Our
experimental setup and an analysis of the RND output for
in-distribution versus out-of-distribution environments are
provided in section [3.3] We define an out-of-distribution
(OOD) metric at episode step ¢ as the mean of the compo-
nents of the vector-valued output of the RND, and denote
this score o;.

One concern with the use of the RND model for out-of-
distribution indication is that the RND model may extrap-
olate well for out-of-distribution data that is close to in-
distribution data. To increase sensitivity, we modified the
RND approach by introducing a high-frequency term to the
prior network. The output of the RND’s prior was modified
to be sin (p) instead of p. The choice of 8 will be discussed
in section This modification makes training the distiller
network more challenging for in-distribution data, but also
makes extrapolation more difficult for out-of-distribution
data.

2.2. RL Architecture

To use our modified RND during deployment, we simply
train it alongside the PPO agent for later use. During train-
ing, the only interaction between the two algorithms is that

the states used to train the RND are exactly those collected
by the PPO agent rollouts. It is not until after training that
the RND is utilized, at which point it provides a measure of
uncertainty for the trained PPO agent with regards to any
encountered states.

In addition to the sinusoidal prior described previously, we
make several changes to the RND/PPO architecture from its
initial publication in Burda et al.| (2019). We use a common
feature extraction CNN for policy network, value network,
and the RND networks, as opposed to separate CNN ex-
tractors for the RND. Our rationale is that we are primar-
ily interested in detecting changes during deployment that
have a direct impact on the agent’s behavior, which is best
captured by the image features learned by the policy (as
opposed to those from a randomly initialized CNN). Our
RND prior and distiller network consist of MLPs with two
hidden layers of size 256, with an output of 256. The RND
takes as input the features extracted by the PPO network,
but does not propagate gradients back into the this extractor
during training. This introduces a moving input space to the
RND, albeit one that moves very slowly.

A diagram of our architecture is shown in Figure[T]

Prior MLP

(frozen)
256/256/256
RND(s)
Distiller
MLP

256/256/256

CNN Extractor

(4ch—32ch, ks

PPO
Policy [— m(als)

84x84x4 5126

PPO
Value — V(s)
5121

Figure 1: Architecture for parallel training of PPO (purple)
and RND (green), which itself consists of a frozen prior
network and learned distiller. A feature extractor learned
under PPO is also used as a feature extractor for the RND
networks, but does not receive weight updates from the
RND.

2.3. Calibration

Given a trained modified RND model and policy, we run M
episodes in the training environment and consider the sets
of out-of-distribution metrics, O; = {0, : t = 1,..., L;},
where j = 1, ..., M, and L; is the length of the jth episode.
We calculate the mean of O; and denote it 0;. We then
consider the set of means {01, ...,0p/}. We estimate the
mean and standard deviation of this normal distribution with
the sample mean. The sample mean and standard deviation
are denoted i and .

A Decision Metric for the Use of a Deep Reinforcement Learning Policy

2.4. Metric Calculation

We have defined an out-of-distribution metric that can be
evaluated at each timestep of an episode. These measure-
ments are quite noisy because it is impossible to train on
every possible input. Therefore, the decision to stop using
the deep RL policy should not be based on one measure-
ment. We will call the “decision metric” a metric that is
derived from the time-series of out-of-distribution metrics
and used for determining when it is appropriate to deploy
an alternate controller. The decision metric is interpretable,
with the same interpretation for any RL environment.

We utilize a Kalman filter in order to estimate o for a given
episode E as we are obtaining out-of-distribution metrics
from the episode, og ;. The Kalman filter approach is used
as a way to smooth measurements, but other smoothing
techniques could also be used. We denote the estimate
of o after ¢ measurements as 0z;. The Kalman filter is
initialized with o ; and an initial variance of (65)%. We
calculate the number of standard deviations the estimated
mean is from the in-distribution sample mean ji. That is, we
calculate
_ |55 — i

ZEp =)
g

The decision metric at time ¢ is defined
dg =2(1 —cdf (zp4)), 2

where the cumulative distribution function is with respect to
N(0,1). Therefore, the decision metric can be interpreted
as the percent of episodes we expect to have mean out-of-
distribution metric further away from the mean of the means
of in-distribution episodes. This is essentially an anomaly
detector for the episode.

3. Experimental Setup
3.1. Meta Arcade Environment

Meta Arcade (Staley et al, 2021) is a configurable suite
of arcade environments for deep reinforcement learning
that exposes access to the underlying game parameters and
appearance. This configurability is useful when constructing
multiple related tasks, or when studying environment shift,
as in this work. We use Meta Arcade to first train an agent
on a game with a known color scheme, and then deploy the
agent under shifted appearance. Although Meta Arcade also
supports shifts in task dynamics or task definition, these
may not result in large visual changes and thus could be
very difficult to detect with a convolutional feature extractor.
We leave those types of MDP alterations to future work (see
Section [3)).

3.2. Training Details

The architecture discussed in Section 2.2 was trained using
PPO to play Meta Arcade Breakout. We used the PPO im-
plementation from Stable-Baselines 3 (Raffin et al., 2021]),
modified to additionally train the RND and modified RNDs
with each minibatch. We trained this model for 20 million
steps using 8 parallel workers. The calibration step as de-
scribed in section [2.4] was performed using 250 episodes of
the default environment.

3.3. Preliminary Statistical Analysis

In order for the decision metric to be successful as an
out-of-distribution indicator, it must be the case that the
out-of-distribution time-series metrics come from distribu-
tions that differ from the distribution obtained from the
default background. We calculated the mean over each of
100 episodes for each of the gray scale colors defined by
0,15, 30,45, 60, 75,90 in order to get a distribution of out-
of-distribution scores for each of these backgrounds. The
corresponding environment states are visualized in Figure
In Figure[3] we have a plot of these distributions for the
RND network. We can observe in this plot that the distribu-
tions are not sufficiently separated. Thus, we hypothesize
that the RND network is extrapolating too well when the
gray-scale values are close to 0. In order to overcome this
problem, we introduced a sine function as described in sec-
tion 2.1} In Figure[d we can observe the distributions for
8 =1,2,3,4,5,6,8,10. We can observe that there is sig-
nificantly more separation in the distributions. We observe
that 5 = 3 provides the best separation for the change in
distribution.

Training
Scenario

15 30 45 60 75 90

GSV: 0

Increasingly OOD

Figure 2: Gray-scaled frames of Meta Arcade with varying
background color. Our agents were all trained with a gray-
scale value of 0 (left), and evaluated as this value was raised,
resulting in increasingly out-of-distribution environments.
Our RL agents received histories of four such frames as
their input observations.

3.4. Experiments and Results

We utilized the modified RND with 8 = 3 and ran back-
ground color change experiments in Meta Arcade in order
to calculate the decision metric defined in section[2.4] Each
episode we consider in the following is just one sample from
the relevant distribution discussed in section [3.3] First, we
observe an example of the performance of the mean out-of-

A Decision Metric for the Use of a Deep Reinforcement Learning Policy

RND

Gray-Scale Value
1 - 0

15

17504 39
— 45
15001 g
— 75
1250 A %

750 [\

0 T T T T T T T
-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004
Mean OOD Metric Value

Figure 3: Distributions of episode mean of out-of-
distribution metrics for varying gray-scale values without
using a sinusoidal prior.

B=

-
©
il
N

1000
2 1000 J >
3 2 500
& \ &
o o /
—0.02 —0.01 0.00 0.01 0.02 —0.02 —0.01 0.00 0.01 0.02
Mean OOD Metric Value Mean OOD Metric Value
=3 ea
2300 /\ 2 400
2 2
250
& M & 200 Gray-Scale Value
N
0 0 - 0
—0.02 —0.01 0.00 0.01 0.02 —0.02 —0.01 0.00 0.01 0.02 15
Mean OOD Metric Value Mean OOD Metric Value — 30
B=5 B=6 — 45
— 60
— 75
> >
2500 £ 500 %0
2 2
: A : _PRN
o o
-002 -0.01 000 001 002 -0.02 -001 000 001 002
Mean OOD Metric Value Mean OOD Metric Value
B=8 p=10
200 /\
2z / z
@ G 200
= & . m
o o
—0.02 —0.01 0.00 0.01 0.02 —0.02 —0.01 0.00 0.01 0.02

Mean 00D Metric Value Mean OOD Metric Value

Figure 4: Distributions of episode mean out-of-distribution
metrics for varying gray-scale values for a collection of
modified RND models.

distribution metric estimator in the default environment; see
Figure[5] We observe that this episode is consistent with
the statistics of the default environment. For the gray scale
color 15, we should not expect excellent performance for
the decision metric due to the results of the analysis we did
in section [3.3] In Figure[6] we provided a case where the
decision metric does indicate out-of-distribution. For the
other gray scale values, the decision metric clearly indicated
out-of-distribution, as we expect from the analysis in section

B3

4. Conclusion

The presented analysis demonstrates a case for which mod-
ification of random network distillation yields better sep-
aration between out-of-distribution uncertainty scores and
in-distribution uncertainty scores than standard random net-

0.0100
--- Expected Mean

—— Estimated Mean
0.0075 4

0.0050

0.0025 4

0.0000 4 /W

—0.0025 4

Episode Mean OOD Metric Estimate

—0.0050

—0.0075

0 100 200 300 400
Timestep

Figure 5: Example of estimate of the mean OOD metric
for the default environment. (The corresponding decision
metric would be close to 1.) We observe that the estimated
mean for this episode is statistically consistent with the
default environment since the mean estimate stays within
three standard deviation of the mean.

0.04

Decision Metric Value

Figure 6: Example of the decision metric during an episode
for gray scale value 15. At approximately timestep 50, the
decision to switch the RL policy to another controller would
be made at the confidence level .005.

work distillation. The resulting modified random network
distillation model can be used as input into a decision metric
calculation useful for indicating when to “turn off” the RL
policy.

5. Future Work

A technique for predicting the effect of the RND modifica-
tion is not available, but utilizing an ensemble of modified
random network distillation models could provide a reason-
able technique for out-of-distribution detection, even close
to the case where the out-of-distribution scenario is very
similar to the in-distribution scenario. We acknowledge
that we are only considering changes to the environment
for which we can analyze and chose our parameter 3 using
this analysis. In practice, there are many different ways that
the environment could change and impact the performance

A Decision Metric for the Use of a Deep Reinforcement Learning Policy

of an RL policy. The Meta Arcade environment provides a
way to control the environment and experiment, but imple-
mentation of RL in the “real world” will introduce changes
in the environment that we cannot be predicted or modelled
ahead of time.

References

Burda, Y., Edwards, H., Storkey, A., and Klimov, O.
Exploration by random network distillation. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
1d=H11JJnR5Ym.

Efron, B. Discussion: Jackknife, bootstrap and other re-
sampling methods in regression analysis. The Annals of
Statistics, 14(4):1301-1304, 1986. ISSN 00905364. URL
http://www. jstor.orqg/stable/2241457.

Efron, B. and Tibshirani, R. J. An Introduction to the Boot-
strap. CRC press, 1994.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep
learning. In Balcan, M. F. and Weinberger, K. Q. (eds.),
Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 1050-1059, New York, New
York, USA, 20-22 Jun 2016. PMLR. URL https://
proceedings.mlr.press/v48/gall6o.html.

Hoel, C.-J., Wolff, K., and Laine, L. Tactical decision-
making in autonomous driving by reinforcement learning
with uncertainty estimation. In 2020 IEEE Intelligent
Vehicles Symposium (IV), pp. 1563—-1569, 2020. doi:
10.1109/1V47402.2020.9304614.

Kahn, G., Villaflor, A., Pong, V., Abbeel, P., and Levine, S.
Uncertainty-aware reinforcement learning for collision
avoidance. CoRR, abs/1702.01182, 2017. URL http:
//arxiv.org/abs/1702.01182

Liitjens, B., Everett, M., and How, J. Safe reinforcement
learning with model uncertainty estimates. pp. 8662—
8668, 05 2019. doi: 10.1109/ICRA.2019.8793611.

Osband, I., Aslanides, J., and Cassirer, A. Randomized prior
functions for deep reinforcement learning. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/

5a7b238balfe502e5dbbeld424b20ded-Paper.

pdf.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1-8, 2021. URL http!
//jmlr.org/papers/v22/20-1364.htmll

Staley, E. W., Ashcraft, C., Stoler, B., Markowitz, J., Val-
labha, G., Ratto, C., and Katyal, K. D. Meta arcade: A
configurable environment suite for meta-learning, 2021.

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
http://www.jstor.org/stable/2241457
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
http://arxiv.org/abs/1702.01182
http://arxiv.org/abs/1702.01182
https://proceedings.neurips.cc/paper/2018/file/5a7b238ba0f6502e5d6be14424b20ded-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a7b238ba0f6502e5d6be14424b20ded-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a7b238ba0f6502e5d6be14424b20ded-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a7b238ba0f6502e5d6be14424b20ded-Paper.pdf
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

	Introduction
	Related Work

	Methodology
	Modified Random Network Distillation
	RL Architecture
	Calibration
	Metric Calculation

	Experimental Setup
	Meta Arcade Environment
	Training Details
	Preliminary Statistical Analysis
	Experiments and Results

	Conclusion
	Future Work

