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Abstract
Learning in high dimensional continuous tasks
is challenging, mainly when the experience re-
play memory is very limited. We introduce a sim-
ple yet effective experience sharing mechanism
for deterministic policies in continuous action do-
mains for the future off-policy deep reinforcement
learning applications in which the allocated mem-
ory for the experience replay buffer is limited.
To overcome the extrapolation error induced by
learning from other agents’ experiences, we fa-
cilitate our algorithm with a novel off-policy cor-
rection technique without any action probability
estimates. We test the effectiveness of our method
in challenging OpenAI Gym continuous control
tasks and conclude that it can achieve a safe expe-
rience sharing across multiple agents and exhibits
a robust performance when the replay memory is
strictly limited.

1. Introduction
Off-policy deep reinforcement learning requires large
amounts of interactions with the environment to obtain op-
timal policies (Schmitt et al., 2020). As the observation
and action spaces of an environment start to increase and
more challenging tasks are introduced, the memory require-
ment for the experience replay (Lin, 1992) dramatically
increases (Fujimoto et al., 2019). Therefore, regardless of
the experience replay sampling algorithms, with limited
memory, off-policy deep RL algorithms should exhibit high-
level performance for future real-world applications.

Sharing experience among concurrent agents remains an
effective alternative when the available off-policy data is
limited as it can allow faster convergence due to diverse
exploration (Lai et al., 2020). However, learning from other
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agents’ experiences may lead to the extrapolation error, a
phenomenon caused by the mismatch between the distri-
butions corresponding to the off-policy data collected by a
different agent and the latest agent’s policy (Fujimoto et al.,
2019). The extrapolation error may lead unseen state-action
pairs to be erroneously estimated and have unrealistic val-
ues (Fujimoto et al., 2019). Hence, for safe and reliable
experience sharing among multiple agents, off-policy cor-
rection (or importance sampling) is required to eliminate
the extrapolation error induced by other agents’ experiences.
Although off-policy correction and experience sharing mech-
anisms are well-studied artifacts for discrete (Espeholt et al.,
2018; Munos et al., 2016; Schmitt et al., 2020) and continu-
ous (Mnih et al., 2016) action domains through the action
probabilities of stochastic policies, in the deterministic and
continuous policy case, action probability estimation and
thus, importance sampling, is not a possible option by the
nature of the policies as there is not any probability distribu-
tion from which the actions are sampled.

Motivated by the possible restrictions to the allocated mem-
ory of the replay buffer and limitations of deterministic
policies, we introduce an actor-critic architecture that en-
ables a diverse and robust parallel learning. Our approach is
not affected by extrapolation error by safely correcting the
experiences gathered by multiple agents. An extensive set
of experiments demonstrate that with only two agents that
learn the environment in parallel, our architecture obtains
an optimal performance when the size of the replay buffer
is very limited. Moreover, we show that the introduced al-
gorithm can significantly improve the state-of-the-art even
when the replay buffer is unlimited. Ultimately, our abla-
tion studies validate that the extrapolation occurs when the
off-policy samples are not corrected, and our modifications
can enable effective filtering to overcome this problem. Our
code and results are available at the GitHub repository1.

2. Technical Preliminaries
We follow the standard reinforcement learning paradigm,
where at each discrete time step t, the agent observes a
state s and chooses an action a; then, it receives a reward
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r and observes a new state s′. The policy of an agent aims
to maximize the value defined as the expected cumulative
discounted returns Rt =

∑∞
i=0 γ

irt+i, where γ ∈ [0, 1)
is a discount factor to prioritize the short-term rewards. A
policy πϕ(·), parameterized by ϕ, is stochastic if it maps
states to action probabilities, a ∼ πϕ(·|s), or deterministic
if it maps states to unique actions, a = πϕ(s). The action-
value function (Q-function or critic) evaluates the action
decisions of an agent in terms of the value Rt. The deep
Q-network, Qθ with parameters θ, estimates action-values
(or Q-values).

In off-policy learning, an agent encounters transitions gener-
ated by a family of behavior policies. We consider a multiple
agent case where K agents explore the same environment
asynchronously and store their experiences in a shared re-
play buffer. At every update step, the agent samples a batch
of transitions through a sampling algorithm that may contain
on- and off-policy samples:

(S
|B|×m
I ,A

|B|×n
I ,R

|B|×1
I ,S

′|B|×m
I ) ∼ BI , (1)

(S
|B|×m
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|B|×n
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|B|×1
E ,S

′|B|×m
E ) ∼ BE , (2)

where |B| is the number of transitions in the sampled batch,
m and n are the state and action dimensions, respectively,
and bold letters represent vectors or matrices of row vectors.
We categorize transitions into the ones executed by the agent
in interest and the ones executed by other agents which we
call internal (own) and external experiences, respectively.
We also refer to entities that corresponds to these two types
of experiences as, again, external and internal entities, e.g.,
external policies, internal actions, external states. There-
fore, BI and BE are the internal and external parts of the
sampled mixed batch, respectively, yielding BI ∪ BE = B
and BI ∩ BE = ∅.

3. Method
3.1. Deterministic Policy Similarity

To enable a safe experience sharing across multiple and
independent agents that learn in parallel, we first aim to
mitigate the extrapolation error (Fujimoto et al., 2019). We
obtain this by constructing a novel policy similarity metric
for deterministic policies. Before presenting the primary
component of our architecture, we start with a basic as-
sumption on the actions chosen by the deterministic policy.
We assume without loss of generality that each continuous
action selected by a behavioral policy is a sample of a mul-
tivariate Gaussian distribution which is not known during
the training. Intuitively, each dimension in an action vector
is correlated to the rest of the dimensions. This is realistic
since each dimension in an action vector often has effects
on the other dimensions (Todorov et al., 2012). Mainly, the
mean vector represents the deterministic action chosen by

the policy, and the covariance matrix represents the noise
introduced by the exploration, deep function approximation,
and bootstrapping in Q-learning (Watkins & Dayan, 1992).

Having our assumption made, we now show how to derive
the similarity weights for the off-policy experiences. The
agent samples a batch of off-policy transitions correspond-
ing to different behavioral policies in each gradient step.
We know that given the states S|B|×m, each action in the
experience replay buffer (Lin, 1992) corresponds to a multi-
variate Gaussian distribution N (µn×1,Σn×n) with mean
vector µn×1 and covariance matrix Σn×n. To measure the
similarity between the current policy and the policies that
executed the off-policy transitions in the external batch BE ,
we first forward pass the states from BE through the be-
havioral actor network corresponding to the current policy:

Â
|BE |×n

E = πϕ(S
|BE |×m
E ). (3)

We now have the batch of current policy’s decisions on the

states from the off-policy transitions Â
|BE |×n

E , and the batch

of past policies’ decisions A|BE |×n
E from BE . Let Ȧ

|BE |×n

E

be the batch of numerical differences in the action decisions:

Ȧ
|BE |×n

:= A
|BE |×n
E − Â

|BE |×n

E . (4)

Observe that Ȧ
|BE |×n

E indicates the deviation between the
current policy and previous behavioral policies of the agent
that generated the off-policy transitions. To construct a
multivariate Gaussian distribution from the action difference
batch, let:

µ̇n×1 =
1

|BE |

|BE |∑
i=1

(Ȧ
|BE |×n

i )⊤, (5)

Σ̇
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=
1

|BE | − 1
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an×1
i (an×1

i )⊤, (6)

where Ȧ
|BE |×n

i represents the action as a row vector corre-

sponding to the ith transition and an×1
i = (Ȧ

|BE |×n

i )⊤ −
µ̇n×1. Then, define the dissimilarity measure as:

ρ = JSD(N (µ̇n×1, Σ̇
n×n

) ∥ N (0n×1, σIn×n)), (7)

where JSD is the Jensen-Shannon divergence, σ is the stan-
dard deviation of the exploration noise, and I is the identity
matrix. We do not directly compare N (µ̇n×1, Σ̇

n×n
) with

a zero multivariate Gaussian since the policies closer to the
current policy may be rejected as the actions may deviate
from the policy’s actual action decisions due to the addi-
tive exploration noise. Furthermore, we choose JSD for
asymmetric similarity measurement as the similarity of two
policy distributions should not be assumed to be directed.
Although KL-divergence is well-known for penalizing a
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distribution that is completely different from the distribution
in interest, two policies in the same environment cannot be
completely distinct (Sutton & Barto, 2018). Naturally, if all
the internal and external experiences correspond to the same
policy, then ρ = 0 and ρ ∈ (0,∞) otherwise. To project
the similarity measure into the interval [0, 1], a non-linear
transformation can be applied:

λ|B|E×1 = [e−ρ, e−ρ, . . . , e−ρ]⊤. (8)

We choose the exponential function for non-linear transfor-
mation to slowly smooth the dissimiliarity. A sharp smooth-
ing would be very greedy and may penalize the external
transitions too much. Observe that two identical policies
have λ|BE |×1 = 1, and distinct policies have λ|BE×1 = 0,
making Equation (8) a similarity measure between two poli-
cies. This forms the backbone of our architecture, which we
refer Deterministic Policy Similarity (DPS), summarized in
Algorithm 1.

Intuitively, DPS first computes the numerical difference be-
tween the actions chosen by the current and external policies,
then compares the difference with zero. This is equivalent
to comparing the distributions of the current policy and the
policies that executed the external transitions under the mul-
tivariate Gaussian distribution assumption. One concern
with DPS may be that the minority of the transitions within
the batch BE may be executed by the policies very similar
to the current agent’s policy. Since we take the average of
external action batch in computing the similarity weight,
i.e., Equation (5), those transitions may be weighted by a
fixed weight close to 0, which results in loss of information.
Nevertheless, since the function approximators in off-policy
actor-critic methods are often optimized through mini-batch
learning, it should be expected that policies correspond to
the majority of the transitions in BE must be close to the
current policy (Fujimoto et al., 2019).

3.2. Deterministic Actor-Critic with Shared Experience

Now, we are ready to introduce our architecture, Determin-
istic Actor-Critic with Shared Experience (DASE). DASE
considers multiple agents, each of which explores different
copies of the same environment, i.e., they learn in parallel
and does not interact with each other except for a shared
experience replay buffer. At every update step, each agent
samples a batch of transitions and updates its actor and
critic networks by combining internal gradients and DPS
weighted external gradients. Through DPS, our architec-
ture enables agents to safely use other agents’ experiences
by resolving the issues with stability due to the potential
exploding gradients, i.e., similarity weights restricted are
within the interval [0, 1], and extrapolation error (Fujimoto
et al., 2019), i.e., by allowing only the transitions correlated
to the distribution under the current policy.

This simple architecture can accelerate learners using differ-
ent GPUs and agents to be distributed across many machines
for the cases in which a single learner fails to reach optimal
returns, e.g., limited memory for the replay buffer. DASE
can also form ensembles of deterministic actor-critic meth-
ods and sampling algorithms to solve challenging continu-
ous control tasks by safely sharing information. However,
due to the asynchronous nature of the architecture, some
agents may be several updates ahead of the rest, also known
as policy lag (Espeholt et al., 2018). Nonetheless, such a
policy lag is corrected by DPS by maintaining only the ex-
ternal policies closer to the distribution under the current
policy.

We perform extensive theoretical analysis on our approach.
Notably, Theorem 3.1 provides a convergence guarantee
for Q-learning (Watkins & Dayan, 1992) under DASE and
Corollary 3.2 proves that DPS produces accurate impor-
tance weights such that a safe experience sharing can be
achieved. All proofs are in Appendix B and the pseudocode
for our hyper-parameter-free algorithm is given in Algo-
rithm 2 through learner threads.

Theorem 3.1. Under the Robbins-Monro stochastic con-
vergence conditions on the learning rate η and standard
sampling requirements from the environment, Q-learning
with the DASE architecture converges to the optimal value
function Q∗.

Corollary 3.2. ξ(s, a) ∈ [0, γ] is a contraction coefficient
based on (s, a) where ξ(s, a) = γ if λ = 0, i.e., when there
is no similarity, and close to zero when the behavioral poli-
cies corresponding to the sampled batch match the current
policy.

4. Experiments
4.1. Experimental Details

We conduct experiments to evaluate the effectiveness of
DASE on OpenAI Gym (Brockman et al., 2016) continuous
control benchmarks. We apply our method to the state-of-
the-art off-policy actor-critic algorithm, Twin Delayed Deep
Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018).
Moreover, our method is compared with a single TD3 (Fu-
jimoto et al., 2018) agent and the Dual Policy Distillation
(DPD) algorithm (Lai et al., 2020), a student-student frame-
work in which two learners operate in the same environment
to investigate diverse viewpoints and extract knowledge
from one another to help them learn more effectively, sim-
ilar to our work. A complete list of hyper-parameters and
experimental details are provided in Appendix C. In addi-
tion to TD3 (Fujimoto et al., 2018), Appendix D presents
the results for DDPG (Lillicrap et al., 2016) and SAC (with
deterministic actor) (Haarnoja et al., 2018), and additional
continuous control tasks.
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TD3 (single agent) TD3 + DASE (1st agent)

TD3 + DPD (average of two agents) TD3 + DASE (2nd agent)

(a) Replay Size: 100,000

(b) Replay Size: 1,000,000

Figure 1. Learning curves for the set of OpenAI Gym continuous control tasks when replay size is 1 million and 100,000. The shaded
region represents half a standard deviation of the average evaluation return over 10 random seeds. A sliding window smoothes curves for
visual clarity.

We consider two settings of the experience replay
buffer (Lin, 1992): a strictly limited (of size 100,000 transi-
tions) and unlimited. For a fair evaluation with DPD (Lai
et al., 2020) which utilizes two agents that simultaneously
explore the environment, we run DASE with two agents,
i.e., K = 2. Figure 1 depicts the experimental results un-
der the two settings of the replay memory. Note that the
curves for DPD (Lai et al., 2020) are the average of its two
agents, while we depict both agents of DASE when K = 2
for further discussion. We discuss the computational com-
plexity introduced by DASE in Appendix E. Moreover, a
comprehensive set of ablation studies is provided to analyze
the effect of each DASE component in Appendix F.

4.2. Discussion

From our comparative evaluations, we infer notable results.
First, DASE substantially improves the TD3 algorithm (Fuji-
moto et al., 2018) and outperforms DPD (Lai et al., 2020) in
all of the tasks tested. As expected, both agents perform sim-
ilar behavior since there is no component in our algorithm
that discriminates against the agents. Although a limited
replay buffer does not always correspond to worse perfor-
mance, a performance difference between the considered
buffer settings always exists, e.g., in the BipedalWalker and
Walker2d environments. This may be due to the environ-
ment dynamics, that is, some environments can be optimally
learned only by the most recent collected transitions, which
is explained by the fact that on-policy methods usually out-

perform off-policy methods in these environments (Hender-
son et al., 2018). Nevertheless, in such cases, our method
is almost invariant to the replay buffer size, having a robust
performance due to a diverse exploration and its safe expe-
rience sharing approach. Lastly, the DPD algorithm (Lai
et al., 2020) exhibits a suboptimal behavior in the majority
of the tasks, which we believe is caused by the decreased
convergence rate due to the additional trajectory generation
that introduces substantial computational overhead.

5. Conclusion
This paper introduces a novel continuous off-policy actor-
critic architecture that employs multiple explorer agents and
a shared experience replay buffer to obtain robust paral-
lel learning when the allocated memory for the collected
transitions is limited. Through a safe experience sharing
among concurrent agents, it can overcome extrapolation
error (Fujimoto et al., 2019) by a novel off-policy correction
method. Experiments show that the introduced method can
achieve state-of-the-art results while baseline algorithms fail
to converge under a very limited replay memory condition.
Moreover, it can also generalize to cases in which the replay
buffer is unlimited, where the state-of-the-art is improved
significantly. In practical applications of off-policy deep
reinforcement learning where action spaces are large and
continuous, we believe DASE will be an effective foothold
for future approaches in attaining data efficiency and dis-
tributing agents.
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A. Pseudocode

Algorithm 1 Deterministic Policy Similarity (DPS)

Input: πϕ,B
Output: λ|B|×1

Obtain the external transitions: (S|B|×m
E ,A

|B|×n
E ,R

|B|×1
E ,S

′|B|×m
E ) ∼ BE

Compute the current action decisions: Â
|BE |×n

E = πϕ(S
|BE |×m
E )

Obtain the action difference batch: Ȧ
|BE |×n

:= A
|BE |×n
E − Â

|BE |×n

E

Compute the mean of the the multivariate Gaussian: µ̇n×1 = 1
|BE |

|BE |∑
i=1

(Ȧ
|BE |×n

i )⊤

Compute the covariance matrix of the multivariate Gaussian: Σ̇
n×n

= 1
|BE |−1

|BE |∑
i=1

an×1
i (an×1

i )⊤

Compute the dissimilarity metric: ρ = JSD(N (µ̇n×1, Σ̇
n×n

) ∥ N (0n×1, σIn×n))

Convert the dissimilarity to the similarity to construct the DPS weights: λ|B|E×1 = [e−ρ, e−ρ, . . . , e−ρ]⊤

return λ|B|×1

Algorithm 2 Deterministic Actor-Critic with Shared Experience (DASE)

Initialize K agents with actor πϕi and critic Qθi networks with parameters ϕi and θi for i = 1, . . . ,K
Initialize target networks if required
Initialize global experience replay buffer R
for each learner thread i = 1, . . . ,K do

for each exploration time step do
Obtain transition tuple τ
Store transition tuple τ in R

end for
for each training iteration do

Sample a batch of transitions B from R
Obtain the DPS weights: λ|B|×1 = DPS(πϕi , B)
Weigh the external transitions by λ|B|×1

Update ϕi and θi by both internal and weighted external transitions
Update target networks if required

end for
end for

B. Missing Proofs
B.1. Convergence Guarantee

Lemma B.1. Consider a stochastic process (ξt, ∆t, Ft), t ≥ 0 where ξt, δt, Ft : X → R, satisfies the equations:

∆t+1(xt) = (1− ξt(xt))∆t(xt) + ξt(xt)Ft(xt); xt ∈ X, t = 0, 1, 2, . . . . (9)

Let Pt be a sequence of increasing σ-fields such that η0 and ∆0 are P0-measurable and ξt, ∆t and Ft−1 are Pt-measurable.
For t = 1, 2, . . . , assume that the following conditions hold:

1. The set X is finite.

2. ξt(xt) ∈ [0, 1],
∑

t ξt(xt) = ∞,
∑

t(ξt)
2 < ∞ with probability 1 and ∀x ̸= xt : ξ(x) = 0.

3. ||E[Ft|Pt]|| ≤ κ||∆t||+ ct where κ ∈ [0, 1) and ct converges to 0 with probability 1.
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4. Var(Ft(xt)|Pt) ≤ K(1 + κ||∆t||)2 where K is a constant.

Where || · || denotes the maximum norm. Then, ∆t converges to 0 with probability 1.

Proof. See (Watkins & Dayan, 1992; Singh et al., 2000; Melo, 2001).

Lemma B.2. Given a finite MDP (S,A, p, r) and the transition tuple (st, at, rt, st+1) at time step t, the Q-learning
algorithm given by the update rule:

Qt+1(st, at) = Qt(st, at) + ηt[rt + γmax
a′∈A

Qt(st+1, a
′)−Qt(st, at)], (10)

converges to the optimal Q-function denoted by Q∗ with probability 1 if∑
t

ηt = ∞,
∑
t

η2t < ∞; ∀(s, a) ∈ S ×A. (11)

Proof. The proof largely relies on Lemma B.1 (Singh et al., 2000). First, Condition 1 in Lemma B.1 is satisfied by the finite
MDP by setting X = S ×A. The assumption of Robbins-Monro stochastic convergence conditions on the learning rate ηt
satisfies Condition 2 by setting ξt = ηt. Then, let:

Ft(st, at) = rt + γmax
a′∈A

Q(st+1, a
′)−Q∗(st, at), (12)

∆t = Qt(st, at)−Q∗(st, at), (13)

Pt = {Q0, s0, a0, η0, r1, s1, . . . , st, at}. (14)

If state-action visitation and updates are performed infinitely often, and γ < 1, then by (12), (13) and (14), Condition 3
is satisfied by the contraction of the Bellman Operator T (Melo, 2001). Finally, Condition 4 follows from a bounded and
deterministic reward function r(st, at) (Melo, 2001), i.e., rt = r(st, at). Then, by Lemma B.1, as ∆t converges to 0 with
probability 1, Qt converges to Q∗ with probability 1.

Theorem B.3. Under the Robbins-Monro stochastic convergence conditions on the learning rate η and standard sampling
requirements from the environment, Q-learning with the DASE architecture converges to the optimal value function Q∗.

Proof. Follows from the proof of Lemma B.2. If the sequences of increasing σ-fields are split into the fields correponding
to the internal and external sequences, convergence of Q-learning with internal transitions are already given by Lemma B.2.
For external transitions, Conditions 3 and 4 are altered due to DPS weights λ, by (12), (13) and (14), we have:

λ||E[Ft|Pt]|| ≤ κλ||∆t||+ ct, (15)

λ2Var(Ft(xt)|Pt) ≤ K(1 + κλ||∆t||)2. (16)

As λ ∈ [0, 1], clearly (15) is satisfied. Moreover, since λ2Var(Ft(xt)|Pt) ≤ λ2K(1 + κ||∆t||)2 and λ2K(1 + κ||∆t||)2 ≤
K(1 + κλ||∆t||)2, we also have (16) satisfied. Furthermore, the internal and external experiences are the samples of the
same finite MDP X , and Robbins-Monro stochastic convergence conditions also apply on the external sequences which yield
Conditions 1 and 2 to be satisfied. Therefore, Q-learning with the DASE architecture converges to the optimal Q-function
under the requirements of infinitely many state-action visitation and updates, and γ < 1.
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B.2. Safe Experience Sharing

Definition B.4. The general expectation operator for one-step importance sampling in return-based off-policy algorithms is
defined by:

HQ(s, a) := Q(s, a) + Eη[r + γEπQ(s′, ·)−Q(s, a)], (17)

for some non-negative one-step importance sampling coefficient λ, and any behavioral policy η, where we write EπQ(s, ·) :=∑
a π(a|s)Q(s, a).

Lemma B.5. The difference between HQ and its fixed point Qπ is expressed by:

HQ(s, a)−Qπ(s, a) = Eη[γ(Eπ[(Q−Qπ)(s, ·)]− λ(Q−Qπ)(s, a))] (18)

Proof. Follows from the proof of Lemma 1 in (Munos et al., 2016). First, let ∆Q := Q−Qπ . Then, by rewriting Eq. (17):

HQ(s, a) = Eη[r + γ(EπQ(s′, ·)− λ′Q(s′, a′))], (19)

where λ′ is the coefficient of the next transition. As Qπ is the fixed point of H, we have:

Qπ(s, a) = HQπ(s, a) = Eη[r + γ(EπQ
π(s′, ·)− λ′Qπ(s′, a′))], (20)

from which we infer that:

HQ(s, a)−Qπ(s, a) = Eη[γ(Eπ∆Q(s′, ·)− λ′∆Q(s′, a′))],

= γEη[Eπ∆Q(s, ·)− λ∆Q(s, a)],

= Eη[γ (Eπ∆Q(s, ·)− λ∆Q(s, a))].

(21)

Theorem B.6. The operator H defined by Definition B.4 has a unique fixed point Qπ . Moreover, if for each action selected
by the policy a ∈ A and sampled batch of transitions B, we have λ = λ(a,B) ∈ [0, e−ρ]. Then for any Q-function Q, we
have:

||HQ−Qπ|| ≤ γ||Q−Qπ||, (22)

under the current policy π.

Proof. Follows from the adaptation of proof of Theorem 1 in (Munos et al., 2016) to one-step importance sampling. It is
trivial to observe from Definition B.4 that Qπ is the fixed point of the operator H since:

Es′∼P (·|s,a)[r + γEπQ
π(s′, ·)−Qπ(s, a)] = (T πQπ −Qπ)(s, a) = 0, (23)

as Qπ is the fixed point of T π . Let ∆Q := Q−Qπ , and from Lemma B.5, we have:

HQ(s, a)−Qπ(s, a) = Eη[γ (Eπ∆Q(s, ·)− λ∆Q(s, a))], (24)
= γEη[Eπ∆Q(s, ·)− λ∆Q(s, a)], (25)
= γEη[Eπ∆Q(s, ·)− Ea[λ(a,B)∆Q(s, a)|B]], (26)

= γEη[
∑
b

(π(b|s)− η(b|s)λ(b|B))∆Q(s, b)]. (27)

Now, since λ ∈ [0, 1], we have:
HQ(s, a)−Qπ(s, a) =

∑
y,b

wy,b∆Q(y, b), (28)

which is a linear combination of ∆Q(y, b) weighted by:

wy,b := γEη[(π(b|s)− η(b|s)λ(b|B))I{s = y}], (29)
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where I(·) is the indicator function. The sum of those coefficients over y and b is:∑
y,b

ωy,b = γEη[
∑
b

(π(b|s)− η(b|s)λ(b,B))], (30)

= γEη[Ea[1− λ(a,B)|B]] (31)
= γEη[1− λ] (32)
= γ − γΛ, (33)

where Λ = Eη[λ]. As 0 ≤ Λ ≤ 1, we have
∑

y,b ωy,b ≤ γ. Therefore, HQ(s, a)−Qπ(s, a) is a sub-convex combination
of ∆Q(y, b) weighted by non-negative coefficients ωy,b which sum to at most γ. Hence, H is a γ-contraction mapping
around Qπ .

Corollary B.7. In the proof of Theorem B.6, notice that the term γEη[λ] depends on (s, a). Let:

ξ(s, a) := γ − γEη[λ]. (34)

Then, we have:
|HQ(s, a)−Qπ(s, a)| ≤ ξ(s, a)||Q−Qπ||. (35)

Thus, ξ(s, a) ∈ [0, γ] is a contraction coefficient based on (s, a) where ξ(s, a) = γ if λ = 0, i.e., when there is no similarity,
and close to zero when the behavioral policies corresponding to the sampled batch match the current policy.

C. Experimental Details
All networks are trained with PyTorch (version 1.8.1) (Paszke et al., 2019), using default values for all unmentioned
hyper-parameters.

C.1. Environment

Performances of all methods are evaluated in MuJoCo (mujoco-py version 1.50) (Todorov et al., 2012), and Box2D (version
2.3.10) (Parberry, 2013) physics engines interfaced by OpenAI Gym (version 0.17.3) (Brockman et al., 2016), using v3
environment for BipedalWalker and v2 for rest of the environments. The environment dynamics, state and action spaces,
and reward functions are not pre-processed and modified for easy reproducibility and fair evaluation procedure with the
baseline algorithms. Each environment episode runs for a maximum of 1000 steps until a terminal condition is encountered.
The multi-dimensional action space for all environments is within the range (-1, 1) except for Humanoid, which uses the
range of (-0.4, 0.4).

C.2. Experimental Setup

All experiments are run for 1 million time steps with evaluations every 1000 time steps, where an evaluation of an agent
records the average reward over 10 episodes without exploration noise and updates. We report the average evaluation
return of 10 random seeds for each environment, including the initialization of behavioral policies, simulators, and network
parameters. All agents are initialized with different seeds in the DASE architecture to obtain randomness in the explored
state-action spaces. Unless stated otherwise, each agent is trained by one training iteration after each time step. Agents are
trained by transition tuples (s, a, r, s′) uniformly sampled from the shared experience replay (Lin, 1992).

C.3. Implementation

Our implementation of the off-policy actor-critic algorithms, DDPG (Lillicrap et al., 2016), SAC (Haarnoja et al., 2018) and
TD3 (Fujimoto et al., 2018), and the baseline algorithm, DPD (Lai et al., 2020), closely follows the set of hyper-parameters
given in the respective papers. For the implementation of TD3 (Fujimoto et al., 2018), we use the author’s GitHub repository
2 for the fine-tuned version of the algorithm and the DDPG (Lillicrap et al., 2016) implementation. For the implementation
of the DPD algorithm (Lai et al., 2020), we use the author’s GitHub repository 3. We also give the hyper-parameter setting
given in (Fujimoto et al., 2018) for the sake of comparison in Table 2. The SAC algorithm (Haarnoja et al., 2018) follows

2https://github.com/sfujim/TD3
3https://github.com/kiminh/dual-policy-distillation

https://github.com/sfujim/TD3
https://github.com/kiminh/dual-policy-distillation
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the same setup and hyper-parameter settings for the deterministic policy, as given in the paper. We implement the DASE
architecture on top of the baseline algorithms separately. The implementation distributes the agents to different threads
while each agent can access the shared experience replay (Lin, 1992) contained in the RAM.

C.4. Architecture and Hyper-parameter Setting

Different from the paper, we increase the batch size in DDPG algorithm (Lillicrap et al., 2016) to 256 in order for agents to
sufficiently see other agents’ experiences and replace Ornstein–Uhlenbeck exploration noise with a zero-mean Gaussian
with a standard deviation of 0.1. SAC (Haarnoja et al., 2018) follows the same hyper-parameter setting given in the paper
except for the deterministic policy. As no exploration noise is applied to the stochastic actor of SAC (Haarnoja et al., 2018),
we add Gaussian noise with a standard deviation of 0.1 to the actions selected by the deterministic policy of SAC (Haarnoja
et al., 2018). For DPD (Lai et al., 2020), we apply the same set of hyper-parameters in DDPG + DPD (Lai et al., 2020) to
TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018). Shared and algorithm-specific hyper-parameters are given in
Table 1 and 2, respectively.

C.5. Hyper-parameter Optimization

No hyper-parameter optimization was performed on DDPG (Lillicrap et al., 2016) and TD3 (Fujimoto et al., 2018). For
SAC (Haarnoja et al., 2018), reward scale for the LunarLanderContinuous and BipedalWalker environments as they are not
presented in the original paper. We tried 5, 10, and 20 for the reward scale. The reward scale value of 5 is the one that gave
the highest average return over the last 10 evaluations over 10 trials of 1 million time steps, for both environments.

C.6. Evaluation

Evaluations occur every 1000 steps, where an evaluation is an average reward over 10 episodes without exploration noise
and network updates. We utilize a new environment with a fixed seed (the training seed + a constant) for each evaluation to
decrease the variation caused by different seeds. Hence, each evaluation uses the same set of initial start states.

C.7. Visualization

Learning curves are used to show performance, and they are given as an average of 10 trials with a shaded zone added to
reflect a half standard deviation across the trials. The curves are smoothed uniformly over a sliding window of 25 evaluations
for visual clarity.

Table 1. Shared hyper-parameters.

HYPER-PARAMETER VALUE

ACTOR REGULARIZATION NONE
OPTIMIZER ADAM (KINGMA & BA, 2015)
NONLINEARITY RELU
DISCOUNT FACTOR (γ) 0.99
GRADIENT CLIPPING FALSE
NUMBER OF HIDDEN LAYERS (ALL NETWORKS) 2
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Table 2. Algorithm specific hyper-parameters used for the implementation of the baseline algorithms.

HYPER-PARAMETER DDPG SAC TD3

CRITIC LEARNING RATE 10−3 3× 10−4 3× 10−4

CRITIC REGULARIZATION 10−2 × ||θ||2 NONE NONE
ACTOR LEARNING RATE 10−4 3× 10−4 3× 10−4

TARGET UPDATE RATE (τ ) 10−3 5× 10−3 5× 10−3

BATCH SIZE 256 256 256
UPDATES PER OPTIMIZATION STEP 1 1 1
CRITIC UPDATE INTERVAL 1 1 1
ACTOR UPDATE INTERVAL 1 1 1
REWARD SCALING 1 5 (20 FOR HUMANOID) 1
NORMALIZED OBSERVATIONS TRUE FALSE FALSE
EXPLORATION POLICY N (0, 0.1) N (0, 0.1) N (0, 0.1)
START (EXPLORATION) TIME STEPS 25000 25000 25000
NUMBER OF HIDDEN UNITS IN THE FIRST LAYER 400 256 256
NUMBER OF HIDDEN UNITS IN THE SECOND LAYER 300 256 256
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D. Complete Evaluation Results

DDPG (single agent) DDPG + DASE (1st agent)

DDPG + DPD (average of two agents) DDPG + DASE (2nd agent)

(a) Replay Size: 100,000

(b) Replay Size: 1,000,000

(c) Replay Size: 100,000

(d) Replay Size: 1,000,000

Figure 2. Learning curves for the set of OpenAI Gym continuous control tasks under the DDPG algorithm. The shaded region represents
half a standard deviation of the average evaluation return over 10 random seeds. A sliding window smoothes curves for visual clarity.
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SAC (single agent) SAC + DASE (1st agent)

SAC + DPD (average of two agents) SAC + DASE (2nd agent)

(a) Replay Size: 100,000

(b) Replay Size: 1,000,000

(c) Replay Size: 100,000

(d) Replay Size: 1,000,000

Figure 3. Learning curves for the set of OpenAI Gym continuous control tasks under the SAC algorithm. The shaded region represents
half a standard deviation of the average evaluation return over 10 random seeds. A sliding window smoothes curves for visual clarity.
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TD3 (single agent) TD3 + DASE (1st agent)

TD3 + DPD (average of two agents) TD3 + DASE (2nd agent)

(a) Replay Size: 100,000

(b) Replay Size: 1,000,000

(c) Replay Size: 100,000

(d) Replay Size: 1,000,000

Figure 4. Learning curves for the set of OpenAI Gym continuous control tasks under the TD3 algorithm. The shaded region represents
half a standard deviation of the average evaluation return over 10 random seeds. A sliding window smoothes curves for visual clarity.
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E. Computational Complexity Results
Table 3 contains the average memory required and time to run baseline algorithms and DASE overall environments, seeds,
and the two settings of experience replay buffer (Lin, 1992). We report the computational complexity results when the
DASE agents are distributed to multi-threads and multi-processes.

If multi-threads are used, the memory allocation for RAM and GPU does not change as the agents are trained with the same
memory allocation for a single agent. For multi-processes, the memory allocation increases for both RAM and GPU. We
find that GPU memory allocation is doubled, and RAM allocation is slightly less than the double of the RAM requirement
for a single agent due to the shared experience replay (Lin, 1992). We expect the run time of DASE with threads to be
approximately the quadruple of the baseline run time and for processes to be double. However, the run time increase for both
distribution types is greater than the initial expectations. Such a significant increase is due to the simulation benchmarks we
use to conduct our experiments. These simulations run on the CPU. Therefore, latency due to the data marshaling increases
the run time and becomes a dominant factor when multiple agents are employed to explore the same environment.

Nonetheless, our algorithm can attain optimal evaluation returns while baseline algorithms may suffer from divergence
or be stuck at suboptimal policies. Hence, there is a trade-off between our architecture’s computational complexity and
performance. Such a trade-off should be carefully handled by considering the environment complexity, such as determining
the number of agents by considering how challenging the environment is to be explored and solved or to use threads or
processes.

Table 3. Average memory requirement and run time for the baseline algorithms with and without DASE when agents are distributed to
multi-threads and multi-processes. Run time is computed over 1 million time steps. Required memories are in megabytes and running
times are in minutes.

ALGORITHM MEMORY (RAM) MEMORY (GPU) RUN TIME RUN TIME INCREASE (%)

DDPG 4056 1271 81.75 -
SAC 4087 1281 99.20 -
TD3 4012 1273 95.67 -
DDPG + DASE (THREAD) 4102 1283 401.38 491%
SAC + DASE (THREAD) 4118 1283 497.25 501%
TD3 + DASE (THREAD) 4134 1287 465.41 486%
DDPG + DASE (PROCESS) 7862 2542 216.98 265%
SAC + DASE (PROCESS) 7924 2562 269.55 271%
TD3 + DASE (PROCESS) 7774 2546 254.48 266%
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F. Ablation Studies

Table 4. Ablation results when the replay size is 100,000. Bold values represent the maximum for each environment. Scores represent the
average return over all agents of DASE.

METHOD ANT HALFCHEETAH LUNARLANDERCONTINUOUS SWIMMER

DASE (K = 2) 5123.03 12375.37 283.95 144.28
DASE (K = 5) 5490.69 12764.66 306.43 155.38
DASE (K = 10) 5876.86 13624.52 327.29 164.64
KL-DASE 4786.68 11036.75 236.26 119.42
ES-DASE 817.75 8328.72 -7.57 65.63

Table 5. Ablation results when the replay size is 1,000,000. Bold values represent the maximum for each environment. Scores represent
the average return over all agents of DASE.

METHOD ANT HALFCHEETAH LUNARLANDERCONTINUOUS SWIMMER

DASE (K = 2) 5434.32 12086.72 277.20 93.81
DASE (K = 5) 5921.87 12826.30 297.88 100.43
DASE (K = 10) 6217.24 13674.15 318.34 107.22
KL-DASE 5094.35 11075.49 227.78 77.25
ES-DASE 865.57 8354.15 0.34 64.17

We perform ablation studies to analyze the effects of the components: the usage of JS-divergence, number of agents, and
off-policy correction (DPS). For this, we compare ablation over DASE under K = {2, 5, 10}, DASE with KL-divergence
(KL-DASE), DASE without off-policy correction (no DPS is applied), and only with experience sharing (ES-DASE). As
DASE is orthogonal to any off-policy deterministic policy gradient algorithm, ablation studies are performed under the
TD3 algorithm (Fujimoto et al., 2018). Ablation results are given in Table 4 and 5, where average return over the last 10
evaluations over 10 trials of 1 million time steps is reported. Learning curves for the ablation studies can be found in our
repository1.

The complete algorithm outperforms every combination except when the number of agents increases. As the off-policy
samples by other agents are safely corrected, the increasing number of agents yields more diverse exploration and thus
slightly higher returns and faster convergence. However, training more agents linearly increases the training duration. We
then replace the JS-divergence with KL-divergence (KL-DASE) in DPS. We obtain higher returns with JSD due to the
symmetric measurement of the policies. Directed similarity measurement slightly degrades the algorithm’s performance
as two policies in the same environment cannot be completely distinct. Finally, we remove the off-policy correction in
learning from other agents’ experiences. The algorithm cannot converge and exhibits randomness in the action selection.
Our theoretical approach is reflected empirically, that is, extrapolation error (Fujimoto et al., 2019) prevents agents from
converging high evaluation returns due to the mismatch between the distributions under the agent’s policy and samples
collected by other agents.


