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Abstract 
Traditional group fairness notions assess a 
model’s equality of outcome by computing statisti-
cal metrics on the outputs. We argue that these out-
put metrics encounter fundamental obstacles and 
present a novel approach that aligns with equality 
of treatment. Through gradient-based inverse de-
sign, we generate a canonical set that shows the 
desired inputs for a model given a preferred out-
put. The canonical set reveals the internal logic of 
the model and thereby exposes potential unethical 
biases. For the UCI Adult data set, we fnd that 
the biases detected by a canonical set interestingly 
differ from those of output metrics. 

1. Introduction 
Artifcial intelligence (AI) systems are used in decision-
making processes throughout all aspects of human life, rang-
ing from detecting child abuse, determining access to edu-
cation or healthcare, and granting loans (Amrit et al., 2017; 
Ledford, 2019; Makhlouf et al., 2021). However, it is by 
now a well-established fact that algorithms can be biased 
and lead to discrimination against already disadvantaged 
population groups (Barocas & Selbst, 2016; Chouldechova 
& Roth, 2018; Whittaker et al., 2018; Buolamwini & Gebru, 
2018). The sources of such biases are multiple and include 
problem specifcation, historical bias, unrepresentative data, 
biased measurement methods, or choice of objective func-
tion (Fazelpour & Danks, 2021; Barocas et al., 2019; Lee & 
Singh, 2021b; Suresh & Guttag, 2021). 

Recent efforts to identify algorithmic discrimination often 
focus on the statistical properties of a model’s output. The 
standard approach is to translate philosophical or political 
notions of group fairness into a statistical metric (Makhlouf 

et al., 2021). The model’s output can then be analysed 
with respect to the chosen notion of group fairness and the 
model is judged to be “fair” or “unfair”. There are several 
widely recognised issues with output-based fairness evalua-
tions of this kind. For one, there often is substantial philo-
sophical disagreement as to what ought to be considered 
a “fair” outcome distribution (Binns, 2018; Gallie, 2019). 
The now infamous controversy about the alleged racism 
of the COMPAS recidivism risk algorithm boiled down to 
such a disagreement. In this case, the two fairness measures 
under debate were accuracy equality and equalised odds 
with respect to race. Second, different notions of group 
fairness are incompatible with each other, except for highly 
special cases (Kleinberg et al., 2016). Third, the compu-
tation of these metrics depends on a benchmark dataset. 
Usually this is done on the set that was used to evaluate 
the model on other metrics such as accuracy. However, by 
using a portion of the training data, the metric is only cal-
culating how well a model learned to optimize in its task 
with respect to this dataset, not to the whole population 
after deployment (Northcutt et al., 2021). Fourth, work on 
group fairness usually relies on the evaluation of a limited 
number of prescribed protected attributes, running risk of 
missing discrimination either against people who are at the 
intersection of different groups or against groups that do not 
share a protected characteristic (Crenshaw, 1990; Binns, 
2020; Wachter & Mittelstadt, 2019). 

Finally, focussing exclusively on output distributions to de-
termine fairness is only part of the story. In everyday life 
and when stakes are high, we are also interested in how the 
decision came about, e.g. why I wasn’t granted the loan 
I applied for or why I didn’t receive the job I interviewed 
for (AIHLEG, 2019; Wachter et al., 2017). Understanding 
the reasoning behind a decision is not just relevant from 
a moral point of view, it is equally important within a le-
gal context. Disparate treatment and direct discrimination 
both aim at addressing cases in which similarly situated 
individuals are not treated alike on grounds of a protected 
characteristic. In these cases, it becomes relevant both that 
such individuals were treated differently and why they were 
treated differently. Output-based fairness evaluations cannot 
address these issues as they do not take into account the 
internal logic of the model in question. 

While output-based fairness evaluations remain important in 
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Figure 1. Through gradient-based inverse design on the input layer, we generate a canonical set for a preferred output of a trained 
decision-making algorithm. The weights and biases of the hidden layers remain fxed; the greyscale of each connection encodes the 
fxed value. The canonical set reveals the model’s internal logic and is visualized via the histograms. We assess the model’s fairness by 
analyzing whether the distributions of the protected features within the canonical set are balanced. 

the fght against discrimination, we here present a comple-
mentary method that takes into account a model’s internal 
logic. In particular, we introduce the notion of a “canoni-
cal set” that allows us to evaluate the fairness of a model’s 
decision-making processes. Through gradient-based inverse 
design, we generate a canonical input, which can be thought 
of as the desired input given a preferred output for a trained 
model (see Fig. 1). The canonical set then emerges from re-
peatedly interrogating the model’s decision-making process 
by generating canonical inputs. By revealing information 
about the model’s mechanisms, the canonical set provides 
us with information as to how the model reaches certain 
decisions, e.g. what features play a role in the model’s 
decision-making process. To expose potential unethical 
biases in the model’s logic, we inspect the distribution of 
a protected demographic feature within the canonical set. 
This approach aligns with a focus on equality of treatment 
rather than a focus on equality of outcome. In contrast to 
output metrics, there is no need for a specifc fairness metric, 
a ground truth, or a benchmark data set. 

We show that canonical inputs can be obtained for any dif-
ferentiable model but that the resulting canonical set in its 
current form is only meaningful for tabular data. To illus-
trate our approach, we evaluate a binary fully-connected 
neural network classifer on the UCI Adult data set (Dua 
& Graff, 2017). We fnd that analyzing the canonical set 
exposes several unethical biases, which interestingly differ 
from those found by traditional group fairness metrics. 

2. Background and Related Work 
The canonical sets lie at the intersection of fairness and 
interpretability in algorithmic decision-making. There is a 
strong interaction between these felds, and their connec-
tions (Meng et al., 2022) and trade-offs (Kleinberg & Mul-
lainathan, 2019) are part of ongoing research. The biggest 
group of methods to gauge fair decision-making translate 
philosophical or political notions of group fairness into 
mathematical statements on the model’s output (Makhlouf 
et al., 2021). The number of this kind of fairness metrics 
has grown over the past years, accounting for at least 19 
defnitions (Barocas et al., 2019; Hardt et al., 2016; Zafar 
et al., 2017). Furthermore, most prominent open-source 
fairness toolkits rely on these statistical output metrics (Lee 
& Singh, 2021a). While the model’s output can help foster 
understanding, it remains a black box when its internal ma-
chinery is opaque. An essential element of a model is thus 
the logic of how it takes decisions. For decision-making 
algorithms, this is especially important in order to increase 
the transparency of and trust in high-impact decisions (AIH-
LEG, 2019). 

Over the past few years, much work has been done on post 
hoc interpretability methods, especially in the computer vi-
sion literature (Das & Rad, 2020). The most prominent 
example is feature importance estimation methods that help 
understand which features have a high impact on the output 
of a model by giving a score to each input. While the feature 
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Algorithm 1 Canonical sets, our proposed algorithm. The 
default values in this paper are: Number of canonical inputs 
in the set N = 1000, Number of epochs E = 200, Learning 
rate α = 0.1, a binary classifer s, and a cross-entropy loss 
function f . 

Require: s(X): Trained model with an input vector X . 
Require: f(ŷ|y): Objective function with a prediction ŷ  
and preferred output y. 
M ← length(X) 
for i = 0, ..., N do 

(m)}M{X m=1 ∼ U(0, 1)i 
for j = 0, ..., E do 

ŷj ← s(Xi) 
Xi ← Xi − αrXi f(ŷj |y) 

end for 
end for 

importance estimation methods differ in various ways, they 
can be broadly categorized into perturbation- and gradient-
based explanations (Agarwal et al., 2021). LIME (Ribeiro 
et al., 2016) and SHAP (Lundberg & Lee, 2017) are ex-
amples of the former as these methods construct local ex-
planations of decision-making algorithms by using pertur-
bations of individual samples. However, they have their 
drawbacks as the resulting explanations are found to be unre-
liable (Slack et al., 2020), they only relate to one prediction 
class, and they do not account for feature dependence (Go-
hel et al., 2021). Nevertheless, perturbation-based meth-
ods are often used in combination with statistical fairness 
metrics (Datta et al., 2016). Thereby, this interpretable fair-
ness analysis inherits the obstacles from the output metrics, 
namely philosophical disagreements (Binns, 2018; Gallie, 
2019), statistical incompatibilities (Kleinberg et al., 2016), 
the absence of universal ground truth, and the selection of a 
benchmark data set (Northcutt et al., 2021). 

The Integrated Gradients (Sundararajan et al., 2017) method 
is an example of gradient-based explanations as it uses the 
gradients of the outputs of individual samples with respect to 
their inputs to construct local explanations. Importantly, the 
gradients can also be used to generate global explanations 
by creating an input with the highest activation and certainty 
for a specifc output starting from random noise (Simonyan 
et al., 2014). The technique to determine hidden parameters 
of a complex system through inverse design has been used 
in several other research felds, including physics, computer 
science, engineering, and biotechnology (Ferruz & Hock¨ er, 
2022; Forte et al., 2022; Lenaerts et al., 2021; Ren et al., 
2020). We show in the following section that the canonical 
sets build upon these methods as they are the result of repeat-
edly applying inverse design to generate canonical inputs, 
thereby revealing the internal logic of a trained model. 

3. Retrieving the Canonical Set using Inverse 
Design 

Conventional neural networks use gradient descent to im-
prove their workings by taking advantage of their mathe-
matical structure, which can be differentiated straightfor-
wardly (Nielsen, 2015). All the layers in a model can be 
optimized through gradient descent, including the input val-
ues. Indeed, the input vector can be seen as a special layer of 
the model. In our technique, we use this property to create 
a canonical input for a preferred output. In other words, 
starting from a random input vector one can construct the 
ideal input of a trained model through gradient descent on 
the input layer. To make this work, one needs to keep the 
weights and biases of the hidden layers of the model fxed. 

This gradient-based inverse design has been extensively 
used in the computer vision literature (Mordvintsev et al., 
2015; Simonyan et al., 2014; Sundararajan et al., 2017), but 
there is a key difference in our application to tabular data. 
For images, canonical inputs are interpretable individually 
and diffcult to aggregate, whereas for tabular data we have 
the opposite scenario. In addition, due to the stochastic 
nature of randomly generated vectors, there is little informa-
tion in the canonical version of a single input vector. There-
fore, we generate a canonical set which results from repeat-
edly interrogating the model’s decision-making process by 
generating canonical inputs, revealing its internal workings. 
To expose potential unethical biases in the model’s logic, we 
inspect the distribution of a protected demographic feature 
within the canonical set, and compare it to the initial random 
distribution. This approach aligns with the increasing focus 
on equality of treatment beyond equality of outcome, as this 
requires interpretability, which builds and supports trust, 
and contributes to procedural fairness. In contrast to output 
metrics, there is no need for a specifc fairness metric, a 
ground truth, or a benchmark data set. 

In Algorithm 1, we show an example of how a canonical set 
can be generated for a trained binary classifer by updating a 
random input vector via gradient descent on the input layer. 
First, we generate an extensive set of randomly initialized 
input vectors where the features are sampled from a uniform 
distribution. Then, these randomly initialized input vectors 
are transformed into canonical inputs through inverse de-
sign. The transformations are the result of minimizing the 
(cross-entropy) loss between the model predictions and the 
preferred output (e.g., a loan is granted) . We refer to the 
Appendix for all the details on the design considerations, 
such as initialization and the impact of hyperparameters. 
Afterwards, the canonical set is analyzed to learn about the 
internal workings of the model and evaluated if the model 
is insensitive to protected attributes. 
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Table 1. Positivity Rates and True Positive Rates of subpopulations for the Protected Features 

MALE FEMALE WHITE 
ASIAN PAC. 
ISLANDER 

AMER. INDIAN 
ESKIMO BLACK OTHER 

PR 
TPR 

24.7 
60.0 

8.0 
54.6 

47.7 
75.0 

0.6 
29.5 

38.6 
62.4 

0.6 
13.3 

4.2 
34.0 

MARRIED DIVORCED 
NEVER 

MARRIED SEPARATED WIDOWED 
SPOUSE 
ABSENT 

MILITARY 
SPOUSE 

PR 
TPR 

38.8 
63.4 

4.3 
36.5 

1.6 
28.5 

3.4 
33.3 

5.0 
46.5 

5.7 
41.7 

42.9 
100.0 

WIFE OWN CHILD HUSBAND NOT IN FAMILY OTHER RELATIVES UNMARRIED 

PR 
TPR 

47.7 
75.0 

0.6 
29.5 

38.6 
62.4 

4.2 
34.0 

0.6 
13.3 

2.4 
34.1 

Figure 2. To analyze if the binary classifer trained on the UCI 
Adult data set is fair, we assess if the protected features have a 
uniform distribution in the canonical set. This canonical set was 
created with a learning rate of 0.1 looping over 200 epochs. To 
assess if it is balanced w.r.t. the four protected features “sex,” 
“race,” “marital status,” “relationship,” their distribution before and 
after inverse design is analyzed, respectively represented by the 
dark purple and light green histograms. The error bars indicate 
the variance of a uniform distribution with the respective number 
of categories. We learn that the “race” feature keeps its uniform 
distribution. “Sex,” “marital status,” and “relationship” do not keep 
their uniform distribution after inverse design. This indicates a 
preference of the model for certain values of these features. Addi-
tionally, three numerical features are analyzed: “age,” “education 
level,” and “hours per week.” All three distributions shift to higher 
values to achieve a positive output. 

4. Interpretation of the Canonical Set of a 
Binary Classifer 

We evaluate the canonical set for a binary classifer. The 
model consists of three fully-connected hidden layers and a 
softmax output layer, and achieved an accuracy of 85.1%. 
The model is trained on the UCI Adult data set (Dua & 

Graff, 2017). We focus on the legally protected featured 
encoded in the UCI Adult data set as “sex,” “race,” “native 
country,” “marital status,” and “relationship,” respectively. 

To analyze if the binary classifer trained on the UCI Adult 
data set is fair, we assess if the protected features have a 
uniform distribution in the canonical set. To assess if it 
is balanced w.r.t. the four protected features “sex,” “race,” 
“marital status,” “relationship,” their distribution before and 
after inverse design is analyzed, respectively represented by 
the dark purple and light green histograms in Fig. 2. We 
learn that the “race” feature keeps its uniform distribution. 
“Sex,” “marital status,” and “relationship” do not keep their 
uniform distribution after inverse design. This indicates a 
preference of the model for certain values of these features. 
Additionally, three numerical features are analyzed: “age,” 
“education level,” and “hours per week.” All three distribu-
tions shift to higher values to achieve a positive output. 

Two well-known traditional output-based notions of assess-
ing fairness based on group membership are Statistical Par-
ity and Equal Opportunity (Makhlouf et al., 2021). Sta-
tistical Parity holds when all subpopulations have an equal 
Positivity Rate (PR). This means that the same proportion 
of each subpopulation receives a positive output. Equal Op-
portunity holds when all subpopulations have an equal True 
Positive Rate (TPR). This implies that for each subpopula-
tion the same rate of people who should receive a favorable 
output also receive this output. We compare the canonical 
set with the results from these traditional fairness metrics 
calculated on the test data set. See Table 1 for the Positivity 
Rates and the True Positive Rates of the respective subpop-
ulations of the four protected features. For all protected 
features there is unfairness between certain subpopulations, 
including the ’race’ feature. For the other features there are 
subtle differences between the subpopulations that receive 
the highest TP and TPR, and the preferred subpopulations 
in the canonical set. Note that the statistical metrics can 
only be evaluated using a ground truth benchmark and they 
do not consider the internal dynamics of the model. 



Exposing Algorithmic Bias through Inverse Design 

References 
Agarwal, S., Jabbari, S., Agarwal, C., Upadhyay, S., Wu, 

S., and Lakkaraju, H. Towards the unifcation and robust-
ness of perturbation and gradient based explanations. In 
Meila, M. and Zhang, T. (eds.), Proceedings of the 38th 
International Conference on Machine Learning, volume 
139 of Proceedings of Machine Learning Research, pp. 
110–119. PMLR, 18–24 Jul 2021. 

AIHLEG. Ethics guidelines for trustworthy ai, 2019. 

Amrit, C., Paauw, T., Aly, R., and Lavric, M. Identifying 
child abuse through text mining and machine learning. 
Expert systems with applications, 88:402–418, 2017. 

Barocas, S. and Selbst, A. D. Big data’s disparate impact. 
Calif. L. Rev., 104:671, 2016. 

Barocas, S., Hardt, M., and Narayanan, A. Fairness and 
Machine Learning. fairmlbook.org, 2019. http:// 
www.fairmlbook.org. 

Binns, R. Fairness in machine learning: Lessons from politi-
cal philosophy. In Conference on Fairness, Accountability 
and Transparency, pp. 149–159. PMLR, 2018. 

Binns, R. On the apparent confict between individual and 
group fairness. In Proceedings of the 2020 conference on 
fairness, accountability, and transparency, pp. 514–524, 
2020. 

Buolamwini, J. and Gebru, T. Gender shades: Intersec-
tional accuracy disparities in commercial gender classi-
fcation. In Conference on fairness, accountability and 
transparency, pp. 77–91. PMLR, 2018. 

Chouldechova, A. and Roth, A. The frontiers of fairness 
in machine learning. arXiv preprint arXiv:1810.08810, 
2018. 

Crenshaw, K. Mapping the margins: Intersectionality, iden-
tity politics, and violence against women of color. Stan. 
L. Rev., 43:1241, 1990. 

Das, A. and Rad, P. Opportunities and challenges in explain-
able artifcial intelligence (xai): A survey. arXiv preprint 
arXiv:2006.11371, 2020. 

Datta, A., Sen, S., and Zick, Y. Algorithmic transparency 
via quantitative input infuence: Theory and experiments 
with learning systems. In 2016 IEEE Symposium on 
Security and Privacy (SP), pp. 598–617, 2016. doi: 10. 
1109/SP.2016.42. 

Dua, D. and Graff, C. UCI machine learning repository, 
2017. URL http://archive.ics.uci.edu/ml. 

Fazelpour, S. and Danks, D. Algorithmic bias: Senses, 
sources, solutions. Philosophy Compass, 16(8):e12760, 
2021. 
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Appendix: Design Considerations 
We discuss the details of how to implement the inverse design technique to construct the canonical set, including the 
encoding of features into vectors, the relation between the learning rate and the number of epochs, the initialization of the 
vectors, and the difference between binary classifers and risk predictors. Although these technical choices have an infuence 
on the canonical set, the technique itself is agnostic to these choices. 

Numerical vs. Categorical Features 

Data referring to humans usually contains categorical features such as gender, occupation, and nationality, and numerical 
features such as age, weight, and income. However, models only process numerical vectors. To feed data to a neural network, 
the categorical features are encoded. These techniques include ‘one-hot encoding’ if the number of categories is known 
when designing the model, ‘hash encoding’ if the number of categories is not known upfront, ‘label encoding’ to transform 
a categorical feature into numerical values (Wijaya, 2021). 

Initialization of the Input Vectors 

The input layer needs to be initialized with a set of randomly generated vectors. These vectors can be created in multiple 
ways. Indeed, the features in the training data each satisfy a particular distribution. These distributions might be the result 
of defective data collection practices, might not represent the distributions of the populations, or reveal the impact of 
discriminatory practices. To create the initial input vectors, the values of the numerical and categorical features could follow 
these distributions or they could be uniformly distributed. The latter option ensures an entirely random initialization and 
also works when the training data set is unknown. See Fig. 3 for the distribution of the initialized vectors (in dark purple) 
when their numerical and categorical features are generated according to a uniform distribution. 

The Preferred Output 

A canonical input can be created for each possible output. In the case of a binary decision, both output carry information. 
The positive output results in a beneft or advantage for the individual. This canonical set of this output tells us which 
features positively impact the decision-making process. The negative output results in a disadvantage or punishment. This 
corresponding canonical set tells us which features have a negative impact on the decision. We focus on the positive output 
set for the rest of the paper. 

Evolution of Numerical Features 

In practice, numerical characteristics have lower and upper limits. For example, the age range currently goes from 0 to 120. 
However, a smaller range could be considered. The inverse design process is agnostic to the meaning of these values and 
might update them outside of the real-world range. It is possible to enforce chosen boundaries in each epoch, each couple of 
epochs, or simply at the end. Enforcing boundaries shift the focus to update other features. This also means that certain 
information is lost. Therefore, we do not limit the numerical features as the shift of these values contains information. 

Recoding the Input Vectors 

When a category is one-hot-encoded, the vector includes zeros for the number of possible values. One of these entrees 
then receives the value one, signaling the value of the feature. However, during the inverse design process, all values in the 
numerical input vector are updated. This process, therefore, can also update the values on the positions which were initially 
zero. However, a vector with real values on all positions does not correspond to an actual individual, with only one specifc 
value for each feature. Therefore we need to recode those vectors to correspond to people. For each categorical feature, the 
highest value related to said feature indicates the value of the category and is indicated as one. All the other positions reset 
to zero. Note that a part of the information in the vector is now lost. The impact on the predictions of the numerical vectors 
and the formatted vectors is shown between the frst and second row in Fig. 3. Here as well, it is possible to recode the input 
vector during each epoch, each couple of epochs, or only at the end during the inverse design process. We have chosen to 
only recode the vectors at the end for this paper. 
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Figure 3. The learning rate parameter of inverse design infuences the prediction of the canonical inputs. For six different learning rates 
between 10−4 and 0.5, a thousand vectors are randomly initialized following a uniform distribution. On the frst row, the predictions are 
plotted before and after inverse design, respectively, in dark purple and light green. On the second row, the predictions of the same initial 
thousand vectors and the canonical inputs after categorical formatting are plotted, again respectively, in dark purple and light green. The 
canonical inputs receive a higher prediction when the learning rate is higher. After categorical formatting, the predictions are less high due 
to a loss of information. Each inverse design has the same amount of epochs, here 200. 

Learning Rate and Number of Epochs 

The traditional gradient descent method requires the specifcation of the “learning rate.” This parameter determines how 
much the weights and biases are adjusted in each epoch. During the learning phase, this parameter values typically between 
10−4 and 10−1 (Nielsen, 2015). In creating the canonical set, this parameter indicates how fast the randomly generated 
input vectors are adjusted. Here, the parameter can typically take higher values. 

The aim of creating the canonical set is that all elements strongly activate the preferred output. The learning rate and the 
number of epochs both have an infuence on how fast this is achieved. See Fig. 3 for the evolution of the predictions when 
the learning rate increases. A suffcient number of epochs is needed to achieve adequate vectors in the canonical set. When 
the learning rate is lower, the number of epochs needs to be higher to achieve a canonical set with a similar mean loss. 
However, the categorical features do not change when updating the vector for very small learning rates. 

Classifers and Predictors 

Several types of decision-making algorithms learn through gradient descent, including binary classifers and score predictors. 
The main difference between these two models is how the output is interpreted. A binary classifer has two output nodes, 
where an optional soft-max layer already interprets the output values in terms of chances. The threshold for the decision is 
then at 0.5. For risk prediction with one output node, the decision boundary can be at the discretion of the human interpreting 
the score. There is not necessarily a fxed threshold. For both types of algorithms, this method works as the threshold, either 
fxed in the case of a binary classifer or fexible for a score predictor, can be taken into account when defning the ideal 
input set. 
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