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Abstract
The desire to build good systems in the face of
complex societal effects requires a dynamic ap-
proach towards equity and access. Recent ap-
proaches to machine learning (ML) documenta-
tion have demonstrated the promise of discur-
sive frameworks for deliberation about these com-
plexities. However, these developments have
been grounded in a static ML paradigm, leaving
the role of feedback and post-deployment perfor-
mance unexamined. Meanwhile, recent work in
reinforcement learning design has shown that the
effects of optimization objectives on the resultant
system behavior can be wide-ranging and unpre-
dictable. In this paper we sketch a framework for
documenting deployed learning systems, which
we call Reward Reports.

1. Introduction
In fall 2021, the Wall Street Journal published the Facebook
files, a series of articles that pieced together platform pol-
icy, flaws, and harms through leaked internal documents
(Hagey & Horwitz, 2021). Among other topics, these arti-
cles tracked how changes to the newsfeed algorithm affected
social interactions. Reporters confirmed what researchers
suspected: Facebook’s pivot to ‘meaningful social interac-
tions’ increased negative content and divisiveness. Further-
more, both top content producers and Facebook executives
were aware the algorithm generated this uptick, although
the latter permitted it in favor of increased engagement.
Even if Facebook were to make an explicit commitment to
anticipate such effects, mitigating the feedback between in-
terventions and harms is no small task. Facebook’s platform
policies balance hundreds of parameters which are updated
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multiple times a day, amounting to a never ending A/B test.
As a former employee explained, the system had grown so
complex that data scientists could not trace negative effects
back to efforts to increase meaningful connection.

Multiple frameworks for documenting AI systems, datasets
and models have emerged (Mitchell et al., 2019; Gebru et al.,
2021; Richards et al., 2020). These aim to track sources
of potential bias or harm, grounded primarily in a static
machine learning (ML) paradigm. However, the effects
of deployed AI systems are not static, and the dynamic
impacts of successive system updates can subvert efforts
both to manage downstream harms and to more evenly dis-
tribute benefits to vulnerable subpopulations. The presence
of feedback and dynamics suggests unique risk vectors and
requisite forms of documentation. Reinforcement learning
(RL), a sub-field of ML that is able to solve complex se-
quential, open-ended problems, provides a dynamic lens
that is broadly applicable to many algorithmic systems with
repeated data-driven optimizations.

We propose Reward Reports, a new form of documenta-
tion that foregrounds the societal impacts of data-driven
optimization systems, whether explicitly or implicitly con-
strued as RL. Building on proposals to document datasets
and models, we focus on reward functions: the objective
that guides optimization decisions in feedback-laden sys-
tems. Reward Reports comprise questions that highlight the
promised benefits and potential risks entailed in defining
what is being optimized in an algorithmic system, and are
intended as living documents that dissolve the distinction
between ex-ante specification and ex-post evaluation. As
a result, Reward Reports provide a framework for ongoing
deliberation and accountability after a system is deployed,
ensuring that desired properties persist in the system’s be-
havior over time.

2. Related Work
Documentation There are a number of existing propos-
als for AI system documentation. Documenting data, re-
gardless of resulting systems, is a well explored avenue
(Barclay et al., 2019; Afzal et al., 2021; Hutchinson et al.,
2021; Denton et al., 2021; Gebru et al., 2021). However,
RL and deployed ML systems also generate and eventu-
ally transform data, so existing data documentation efforts
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are insufficient to reveal the risks and failures of dynamic
datasets and feedback driven systems. There are also pro-
posals for model (Mitchell et al., 2019), domain (Ramı́rez
et al., 2020; Kühl et al., 2021) or outcome specific (Sokol
& Flach, 2020) forms of ML documentation. Reward Re-
ports might be a useful supplement to these approaches by
focusing on the specification and effects of models. Our
work has similarities with previous proposals for AI Ethics
Sheets (Mohammad, 2021), Fact Sheets (Arnold et al., 2019;
Richards et al., 2020), or Scorecards (Blasch et al., 2021),
but uniquely focuses on prompting deliberation about the
feedback-driven risks inherent to dynamic systems. Reward
Reports are closely related to Algorithmic Impact Assess-
ments (AIA), which offer a framework for evaluating risks
before an AI system is developed or acquired (Reisman
et al., 2018; Selbst & Barocas, 2018). These frameworks
presume an agency-vendor relationship, and focus narrowly
on the procurement of automated decision systems. Reward
Reports are intended to supersede these ex-ante concerns,
engaging instead with the necessarily circuitous process of
refining the specifications of a feedback system.

Societal Risks of RL The RL research community has
begun to reflect on the unique risks and challenges that
may be posed by RL systems (Whittlestone et al., 2021;
Gilbert, 2021; Wen et al., 2021; Carroll et al., 2021; Evans
& Kasirzadeh, 2021; Zhan et al., 2021). Recent general
audience books have echoed these concerns (Russell, 2019;
Christian, 2020). While these efforts have begun to capture
the unique stakes in deploying RL systems, there is no con-
sensus on how to chart associated risks. We intend Reward
Reports as an instrument of deliberation and accountability.

AI Governance As reflected in the growing number of
proposed AI governance frameworks (Gasser & Almeida,
2017; Lee et al., 2019; Yeung et al., 2019; Cihon, 2019;
Wirtz et al., 2020; Reddy et al., 2020), ML and adja-
cent communities have increasingly acknowledged socio-
technical risks and the need for novel harm mitigation strate-
gies (Selbst et al., 2019; Dean et al., 2021).

3. Background
3.1. Action, Objective, Adaptation

Learned predictive models are the means to some end. It
is the decisions made, or actions taken, that determine the
extent to which a model is successful. For example, con-
gested suburban roadways in the community of Los Gatos,
CA, USA are caused directly by the actions of drivers, and
indirectly by the actions of routing algorithms that predict a
poorly-scaling short-cut path (Peterson, 2018).

Action occurs not only on the basis of predictions, but also
towards some objective. The definition of objective is cru-

cial to the resulting behavior. Identical traffic models will
result in different routing suggestions depending on whether
the algorithm is optimizing for arrival time or fuel consump-
tion (NREL, 2021).

Finally, these optimization systems are often updated based
on additional data collected during their operation, making
them adaptive. By accounting for the dependence between
past decisions, observed data, and current models, systems
in effect react to dynamic environments and improve per-
formance over time. For example, when observed music
listening patterns are used as additional data in preference
models, music recommendation algorithms can adapt to an
individual’s evolving tastes (Dhahri et al., 2018).

While action, objective, and adaptation are important for en-
suring that systems work as intended, they are not captured
in frameworks that document static elements of ML models.

3.2. Reinforcement Learning

The reinforcement learning (RL) framework succinctly en-
compasses action, objective, and adaptation. RL algorithms
take actions, are motivated by a reward signal which en-
codes the objective, and adapt based on the feedback from
this interaction. While the goal of supervised learning (SL)
procedures is to use data to generate a model that makes
accurate predictions, the goal of RL algorithms is to interact
with an environment to generate a policy that achieves high
reward. However, once SL models are deployed towards
some goal and updated with new data, the concerns high-
lighted by the RL framework become relevant. In this sense,
ML deployments can be understood through the lens of RL.

Reinforcement learning is a framework for optimizing a
system via trial and error. In common terminology, an agent
executes actions a⃗t ∈ A in an environment. In response,
the agent receives a scalar reward rt ∈ R and makes an
observation o⃗t ∈ O of the environment. Actions are made
on the basis of these observations according to a policy
π : H → ∆(A), where H = O × · · · × O represents the
history of observations and ∆(A) represents a probability
distribution over the action space. The goal of a reinforce-
ment learning agent is to find a policy that maximizes the cu-
mulative reward over some time horizon:

∑H
t=0 γ

trt where
the discount factor γ ∈ (0, 1] weighs current rewards ver-
sus future potential rewards. This paradigm captures many
problems of interest, from choosing advertisements that are
most likely to result in a click (Liu & Li, 2021; Langford &
Zhang, 2007) to determining the best dosing schedule for a
patient (Shortreed et al., 2011).

A key element of RL is the effect of actions on the future
behavior of the environment. This dependence is often
modeled as a Markov Decision Process (MDP) (Bellman,
1957). In the MDP setting, the state s⃗t describes the status
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of the environment. The key assumption, called memory-
lessness, is that the current state and action are sufficient
for predicting the future state. These transition probabil-
ities from one state to the next are also referred to as the
system dynamics. Furthermore, the reward is determined by
the state, so that rt = r(s⃗t, a⃗t) for some reward function
mapping from the current environment to a scalar represen-
tation of desirability. Under these assumptions, it is optimal
to consider policies that depend only on the current state,
π : S → ∆(A). Often, RL algorithms assume that the
state is observed directly o⃗t = s⃗t (or similarly, that it can be
constructed in a straightforward manner e.g. though history
truncation s⃗t = [ot−h, . . . , ot]), and the policy is typically
parametric, with a parameter vector denoted θ. In the MDP
setting there are a rich set of tools for understanding and op-
timizing performance, such as value functions via dynamic
programming, that can be directly applied when the full
transition model is known.

Though such MDP dynamics are understood to determine
the evolution of the system, for RL problems they are not
necessarily known a priori to designers. Instead, RL al-
gorithms seek to optimize the policy on the basis of inter-
actions with the environment, using the reward signal and
observations. There are a wide range of RL algorithms:
some which optimize the policy directly (e.g. by learning
the weights of a neural network based on observed perfor-
mance), and others which first estimate intermediate quan-
tities (e.g. value, transition, or reward function) and then
transform these into a policy. Some algorithms generate
policies offline from existing datasets, while others solely
use online interactions. Any RL algorithms with an online
component must contend with the exploration/exploitation
trade-off: choosing between actions likely to be high reward,
and those likely to be informative (Sutton & Barto, 2018).

The RL framing is general, so other machine learning
paradigms can be viewed as special cases of it. For example,
supervised learning can be viewed as the optimization of
a classification or regression policy where the rewards are
defined by accuracy and the time horizon is equal to one.
Online learning situates supervised learning systems in a
sequentially evolving environment (Shalev-Shwartz et al.,
2011), while the study of bandit problems reduces RL to
the static regime where actions do not affect the environ-
ment (Berry & Fristedt, 1985).

4. Motivation
The RL lens is useful not only because ML deployments
often operate in dynamical environments. It is also that there
is feedback between the environment and the deployment.
In this section, we first review three levels of feedback that
characterize RL systems: control feedback from state to
action, behavior feedback from the data to the policy, and
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Figure 1. A diagram depicting the interactions of control, behav-
ioral, and exogenous feedback in a RL system.

exogenous feedback from the target environment to adjacent
entities (Gilbert et al., 2022) (see Fig. 1).

4.1. A Taxonomy of Feedback

Control feedback maps observations or states to actions. A
very simple example is a thermostat which decides whether
or not to turn on a furnace based on temperature sensors.
These decisions are made many times per second, and allow
an HVAC system to maintain comfortable indoor temper-
ature under varying weather conditions. Such systems are
often called “automatic feedback control,” hence the term
control feedback. “Intelligent” behaviors arise because ac-
tions are constantly adjusted on the basis of observations,
but the rules that control the behavior remain the same.

Behavior feedback maps data to the learned policy. This
form of feedback occurs when RL systems automatically
adapt their policy based on reward. Questions of reaction be-
come questions of trial-and-error evaluation: “At what tem-
perature should the furnace turn on?” evolves into “What
keeps the operating temperature as close as possible to the
target?” The ability to learn from experience is part of what
makes RL systems seem so powerful, and it makes them
applicable to domains that are difficult to otherwise model.
For example, it would be challenging to hand-design a pol-
icy for recommending music to a listener, but data-driven
approaches make this task tractable.

Exogenous feedback occurs when the application domain
itself shifts in response to the deployed system. These shifts
could be due to political or economic conditions that are out-
side the system’s purview. For example, smart thermostats
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may enable finer-grained control over household heating,
changing what a comfortable home amounts to or changing
the electric loading of buildings, towns, and regions. Traffic
driven by recommendation systems might incentivize cre-
ators to create attention-grabbing content, turning to strate-
gies like outrage and conspiracy (Munger & Phillips, 2022).
In principle, if such dynamics could be predicted by an RL
agent, they could be brought under the purview of behavior
or control feedback. But in practice, it is not clear that this
is possible—the observations would need to be extremely
rich and the planning horizon extremely long. Exogenous
feedback highlights the potential of externalized risks.

4.2. Risks and Documentation

For many systems, reward design–the choice of how and
what to optimize–amounts to a political decision about how
different types of feedback may rewire the domain and pose
risks to various stakeholders. As it is often impossible to
fold all of the domain dynamics within a controllable plan-
ning horizon and precise reward function, exo-feedback
is in practice unavoidable. Furthermore, it is unrealistic
to articulate all possible specifications a priori. A single
specification may not only induce exo-feedback, but also
necessarily implicates forms of control and behavioral feed-
back.

The risks of feedback can at least be approached and eval-
uated through documentation. This calls for legible and
periodic mechanisms for auditing RL systems pre- and post-
deployment. It is these reviews that must decide whether
or how the optimized behaviors align with the application
domain, in correspondence with resultant risks and possi-
ble harms. Given the dynamic nature of these effects, the
corresponding document must be dynamic as well: updated
and revisited over time to map the evolution of feedback
between the system and the domain in which it is deployed.

5. Reward Report Components
We propose Reward Reports, a structured series of design
inquiries for automated decision systems (see Fig. 2). In-
cluding but not limited to the use of reinforcement learning,
Reward Reports are intended to engage practitioners by re-
visiting design questions over time, drawing reference to
previous reports and looking forward to future ones. The
changelog component of a Reward Report becomes an in-
terface for stakeholders, users, and engineers to oversee and
evaluate the documented system.

A Reward Report is composed of six sections, arranged to
help the reporter understand and document the system. A
Reward Report begins with system details (1) that contain
the information context for deploying the model. From there,
the report documents the optimization intent (2) which ques-

Reward Report Contents
• System Details: Basic system information.

– Person or organization developing the system
– Deployment dates
– Contact

• Optimization Intent: The goals of the system and how
reinforcement manifests.
– Goal of reinforcement
– Performance metrics
– Oversight metrics
– Failure modes

• Institutional Interface: The interconnections of the auto-
mated system with society.
– Involved agencies
– Stakeholders
– Computation footprint
– Explainability
– Recourse

• Implementation: The low-level engineering details of the
ML system.
– Reward, algorithmic, and environment details
– Measurement details
– Data flow
– Limitations
– Engineering artifacts

• Evaluation: Specific audits on system performance.
– Evaluation environment
– Offline evaluations
– Evaluation validity
– Performance standards

• System Maintenance: Plans for long-term verification of
behavior.
– Reporting cadence
– Update triggers
– Changelog

Figure 2. Summary of reward report sections.

tions the goals of the system and why RL or ML may be a
useful tool. The designer then documents how it can affect
different stakeholders in the institutional interface (3). The
next two sections contain technical details on the system im-
plementation (4) and evaluation (5). The report concludes
with plans for system maintenance (6) as additional system
dynamics are uncovered.

The appendix includes a more thorough description of these
components, and three example Reward Reports from varied
domains.

6. Conclusion
The scale and complexity of contemporary optimization
pipelines raise unique concerns not addressed by static doc-
umentation. Reward Reports fill this gap, providing a frame-
work for iterative deliberation over the time-evolution of a
system and its feedback channels. Responsibility is a dy-
namic problem, and needs to be deliberated about as such.
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Reward Reports enact forms of documentation commensu-
rate with the feedback-laden systems whose dynamics–not
just models or data–are a critical object of concern.
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Kühl, N., Hirt, R., Baier, L., Schmitz, B., and Satzger, G.
How to conduct rigorous supervised machine learning in
information systems research: The supervised machine
learning report card. Communications of the Association
for Information Systems, 48(1):46, 2021.

Langford, J. and Zhang, T. Epoch-greedy algorithm for
multi-armed bandits with side information. Advances in
Neural Information Processing Systems (NIPS 2007), 20:
1, 2007.

Lee, M. K., Kusbit, D., Kahng, A., Kim, J. T., Yuan, X.,
Chan, A., See, D., Noothigattu, R., Lee, S., Psomas, A.,
et al. Webuildai: Participatory framework for algorith-
mic governance. Proceedings of the ACM on Human-
Computer Interaction, 3(CSCW):1–35, 2019.

Liu, Y. and Li, L. A map of bandits for e-commerce. In
Workshop on the Multi-Armed Bandits and Reinforcement
Learning (MARBLE), 2021.

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman,
L., Hutchinson, B., Spitzer, E., Raji, I. D., and Gebru, T.
Model cards for model reporting. In Proceedings of the
conference on fairness, accountability, and transparency,
pp. 220–229, 2019.

Mohammad, S. M. Ethics sheets for ai tasks. arXiv preprint
arXiv:2107.01183, 2021.

Munger, K. and Phillips, J. Right-wing youtube: a supply
and demand perspective. The International Journal of
Press/Politics, 27(1):186–219, 2022.

NREL. Google Taps NREL Expertise
To Incorporate Energy Optimization into
Google Maps Route Guidance . https:
//www.nrel.gov/news/program/2021/
google-taps-nrel-expertise-to-incorporate-energy-optimization-into-google-maps-route-guidance.
html, April 2021. [Online; accessed 2-January-2022].

Peterson, J. Google apps causing grid-
lock in downtown Los Gatos. https:
//www.mercurynews.com/2018/06/01/
google-apps-causing-gridlock-for-downtown-los-gatos/,
2018. [Online; accessed 2-January-2022].

Ramı́rez, J., Baez, M., Casati, F., Cernuzzi, L., and Bena-
tallah, B. Drec: towards a datasheet for reporting ex-
periments in crowdsourcing. In Conference Companion
Publication of the 2020 on Computer Supported Cooper-
ative Work and Social Computing, pp. 377–382, 2020.

Reddy, S., Allan, S., Coghlan, S., and Cooper, P. A gov-
ernance model for the application of ai in health care.
Journal of the American Medical Informatics Associa-
tion, 27(3):491–497, 2020.

Reisman, D., Schultz, J., Crawford, K., and Whittaker, M.
Algorithmic impact assessments: A practical framework
for public agency accountability. AI Now Institute, pp.
1–22, 2018.

Richards, J., Piorkowski, D., Hind, M., Houde, S., and
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A. Reward Report Components
A.1. System Details

This section collects basic information a user or stakeholder may need in reference to the automated decision system.

1. Person or organization deploying the system: This may be the designer deploying the system, a larger agency or body,
or some combination of the two. The entity completing the report should also be indicated.

2. Reward date(s): The known or intended timespan over which this reward function & optimization is active.
3. Feedback & communication: Contact information for the designer, team, or larger agency responsible for system

deployment.
4. Other resources: Where can users or stakeholders find more information about this system? Is this system based on one

or more research papers?

A.2. Optimization Intent

This section addresses basic questions about the intent of the reward function and optimization problem. Designers first
document the intent of a particular solution, translating the system’s quantitative objective into a qualitative description. In
later sections, they have the opportunity to further reflect on how implementation details aid in, or diminish the broader
goal. Stakeholders and users can employ this section to understand if the intent of the system matches with the effects they
observe or experience.

1. Goal of reinforcement: A statement of system scope and purpose, including the planning horizon and justification of a
data-driven approach to policy design (e.g. the use of reinforcement learning or repeated retraining). This justification
should contrast with alternative approaches, like static models and hand-designed policies. What is there to gain with the
chosen approach?

2. Defined performance metrics: A list of “performance metrics” included explicitly in the reward signal, the criteria for
why these metrics were chosen, and from where these criteria were drawn (e.g. government agencies, domain precedent,
GitHub repositories, toy environments). Performance metrics that are used by the designer to tune the system, but not
explicitly included in the reward signal should also be reported here.

3. Oversight metrics: Are there any additional metrics not included in the reward signal but relevant for vendor or system
oversight (e.g. performance differences across demographic groups)? Why aren’t they part of the reward signal, and why
must they be monitored?

4. Known failure modes: A description of any prior known instances of “reward hacking” or model misalignment in the
domain at stake (Krakovna et al., 2020), and description of how the current system avoids this.

A.3. Institutional Interface

This section documents the intended (and in subsequent reports, observed) relationship between the system and the broader
context in which it is deployed. While necessarily piecemeal, the explicit documentation of this interface will allow designers
to reflect on and revisit the system assumptions over time. These reflections may bring novel interests or agencies into scope
and allow for organizing the emergent interests of stakeholders and users where necessary.

1. Deployment Agency: What other agency or controlling entity roles, if any, are intended to be subsumed by the RL
system? How may these roles change following system deployment?

2. Stakeholders: What other interests are implicated in the design specification or system deployment, beyond the designer?
What role will these interests play in subsequent report documentation? What other entities, if any, does the deployed
system interface with whose interests are not intended to be in scope?

3. Explainability & Transparency: Does the system offer explanations of its decisions or actions? What is the purpose
of these explanations? To what extent is the policy transparent, i.e. can decisions or actions be understood in terms of
meaningful intermediate quantities?

4. Recourse: Can stakeholders or users contest the decisions or actions of the system? What processes, technical or
otherwise, are in place to handle this?
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A.4. Implementation

Given the sensitivity of reinforcement learning systems, it is important to document specific implementation details of
the system. Even small changes in implementation can result in substantial behavior shifts downstream, making such
factors difficult to track when used at scale. Documenting these design decisions will both help prevent failures in specific
applications and assist technical progress.

1. Reward details: How was the reward function engineered? E.g. is it based on a well-defined metric? Is it tuned to
represent a specific behavior? Are multiple terms scaled to make one central loss, and how was the scaling decided?

2. Environment details: Description of states, observations, and actions with reference to planning horizon and hypothe-
sized dynamics/impacts. What dynamics are brought into the scope of the optimization via feedback? Which dynamics
are left external to the system, as drift? Have there been any observed gaps between conceptualization and resultant
dynamics?

3. Measurement details: How are the components of the reward and observations measured? Are measurement techniques
consistent across time and data sources? Under what conditions are measurements valid and correct? What biases might
arise during the measurement process?

4. Algorithmic details: The key points on the specific algorithm(s) used for learning and planning. This includes the
form of the policy (e.g. neural network, optimization problem), the class of learning algorithm (e.g. model-based RL,
off-policy RL, repeated retraining), the form of any intermediate model (e.g. of the value function, dynamics function,
reward function), technical infrastructure, and any other considerations necessary for implementing the system. Is the
algorithm publicly documented and is code publicly available? Have different algorithms been used or tried to accomplish
the same goal?

5. Data flow: How is data collected, stored, and used for (re)training? How frequently are various components of the
system retrained, and why was this frequency chosen? Could the data exhibit sampling bias, and is this accounted for in
the learning algorithm? Is data reweighted, filtered, or discarded? Have data sources changed over time?

6. Limitations: Discussion and justification of modeling choices arising from computational, statistical, and measurement
limitations. How might (or how have) improvements in computational power and data collection change(d) these
considerations and impact(ed) system behavior?

7. Engineering tricks: RL systems are known to be sensitive to implementation tricks that are key to performance. Are
there any design elements that have a surprisingly strong impact on performance? E.g. state-action normalization,
hard-coded curricula, model-initialization, loss bounds, or more?

A.5. Evaluation

Assessing the potential behavior of a feedback system is important for anticipating its future performance and risks that may
arise. This section records evaluations done by the designer before deploying the system and each time the reward report is
revisited. This section allows stakeholders and users to hold designers accountable for the performance of the system once
deployed. It is important to distinguish whether the evaluations are done in a simulation (offline) or deployed on real users
(online) and if the evaluation procedure is on a fixed dataset (static) or evolves over time (dynamic).

1. Evaluation environment: How is the system evaluated (and if applicable, trained) prior to deployment (e.g. using
simulation, static datasets, etc.)? Exhaustive details of the offline evaluation environment should be provided. For
simulation, details should include description or external reference to the underlying model, ranges of parameters, etc.
For evaluation on static datasets, considering referring to associated documentation (e.g. Datasheets (Gebru et al., 2021)).

2. Offline evaluations: Present and discuss the results of offline evaluation. For static evaluation, consider referring to
associated documentation (e.g. Model Cards (Mitchell et al., 2019)). If applicable, compare the behaviors arising from
counterfactual specifications (e.g. of states, observations, actions).

3. Evaluation validity: To what extent is it reasonable to draw conclusions about the behavior of the deployed system
based on the available offline evaluations?
How is the online performance of the system presently understood? If the system has been deployed, were any unexpected
behaviors observed?

4. Performance standards: What standards of performance and safety is the system required to meet? Where do these
standards come from? How is the system verified to meet these standards?



Reward Reports for Reinforcement Learning

A.6. System Maintenance

This section documents plans for post-deployment oversight, including subsequent reviews of real-world implementation
and how the monitoring of resultant dynamics is intended to (or has) shed light on ex-ante assumptions. These plans include
any additional grounds for updating the report in case of sustained shifts in observations or metrics (e.g. the effects of
exogenous changes on system behaviors). As such, this section must draw sustained reference to previous Reward Reports,
including subsequent changes to the description, implementation, or evaluation, and what prompted these changes. While
previous sections outline how the system learns from data, this section tracks how organizations learn to oversee the system.
Its documentation is particularly important for defining accountability for the system itself, those who manage it, and those
responsible for completing periodic reports.

1. Reporting cadence: The intended timeframe for revisiting the Reward Report. How was this decision reached and
motivated?

2. Update triggers: Specific events (projected or historic) significant enough to warrant revisiting this report, beyond the
cadence outlined above. Example triggers include a defined stakeholder group empowered to demand a system audit, or
a specific metric (either of performance or oversight) that falls outside a defined threshold of critical safety.

3. Changelog: Descriptions of updates and lessons learned from observing and maintaining the deployed system. This
includes when the updates were made and what motivated them in light of previous reports. The changelog is the key
difference between Reward Reports and other forms of machine learning documentation, as it successively reframes
prior reports and reflects their intrinsically dynamic nature.

B. Examples
We include three example Reward Reports for imagined and real automated decision-making systems. Our aim with these
examples is to illustrate the breadth and scope of questions that a Reward Report could engage with, and to demonstrate how
Reward Reports can apply to both explicit and implicit RL systems. Here, we briefly outline each included example, and
refer the reader to the appendix for the actual example Reward Reports.

B.1. Project Flow: An RL policy for dissipating stop-and-go traffic waves

Project Flow is an autonomous vehicle testbed that allows using deep reinforcement learning to control and optimize traffic
across in roadway networks (Wu et al., 2021). Inspired by recent work with using Project Flow (Kreidieh et al., 2018),
we sketch a hypothetical deployment of an RL policy designed for dissipating stop-and-go traffic waves at a freeway exit,
including several iterations of the Reward Report documented in the accompanying changelog. The changelog shows various
problems that arise with the resulting problem dynamics, including an expansion of the planning horizon, the addition of
new oversight metrics, stakeholder complaints, and requisite institutional shifts to cope with changes to the specification and
application domain.

B.2. MovieLens: A dynamically updated movie recommender system

The purpose of MovieLens is to match users to personalized movie recommendations based on ratings of other movies
previously entered by the user (Harper & Konstan, 2015). Unlike the other example systems we discuss, MovieLens is a
static preference model generated through supervised learning. However, because of the system’s age (initial release in
1997) and its repeated retraining, it can be interpreted as an RL system that is learning a ranking policy that must adapt to a
changing environment. The changelog documents the actual historical updates to the model prompted by changes to the
environment, including new interfaces, user-base size, optimization parameters, user-generated content, and major dataset
publications. This example Reward Report is based on the history of the MovieLens project published in (Harper & Konstan,
2015).

B.3. MuZero: DeepMind’s general game-playing agent

The purpose of MuZero (and its preceding systems, AlphaGo and AlphaZero) is to improve state-of-the-art performance in
the games of chess, Go, shogi, and a benchmark suite of Atari games (Silver et al., 2016). We provide a Reward Report that
documents the evolution of the system through these successive stages of development, including changes in the design
motivation and performance metrics, as well as more extensive use of reinforcement learning.
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r(t) = ∥vdes∥ − ∥vdes − v(t)∥ − α
∑

i

max [hmax − hi(t), 0]

Figure 1: The reward function for the system in question consists of three terms. The first term
vdes is a positive constant that rewards the agent for longer simulation episodes - discouraging
vehicle collisions, which terminate simulation runs early. The second term penalizes the agent
when the instantaneous overall system velocity v(t) differs from the desired system velocity vdes.
Finally, the third term sums over each subscribed Connected Autonomous Vehicle and adds a
penalty whenever this vehicle is too close to the vehicle immediately in-front - a characteristic
known to trigger stop-and-go traffic waves. More details are provided below in the section ‘Defined
Performance Metrics’.

1 System Details

1.1 System Owner

This may be the designer deploying the system, a
larger agency or body, or some combination of the
two. The entity completing the report should also be
indicated.

This system was developed by the Project Flow
core team members, with all deployment, infras-
tructure, and ongoing management taking managed
by Caltrans.

1.2 Dates

The known or intended timespan over which this re-
ward function & optimization is active.

The system discussed here was trained in simula-
tion during 2020, using empirical hyper-parameters
(such as inflow traffic rates) collected during 2019.
The RL policy was deployed in the real world on a
trial basis on the 1st of Jan, 2021, and is presently
undergoing initial real-world evaluation and valida-
tion.

1.3 Feedback & Communication

Contact information for the designer, team, or
larger agency responsible for system deployment.

Any correspondence should be directed to
test@example.ca.gov.

1.4 Other Resources

Where can users or stakeholders find more informa-
tion about this system? Is this system based on one
or more research papers?

More information about this specific system can
be found in the paper [1], as well as in the associated
project website.

General information about the project flow sim-
ulation environment can be found in [2] or on the
project website and associated GitHub repository.

2 Optimization Intent

2.1 Goal of Reinforcement

A statement of system scope and purpose, includ-
ing the planning horizon and justification of a data-
driven approach to policy design (e.g. the use
of reinforcement learning or repeated retraining).
This justification should contrast with alternative
approaches, like static models and hand-designed
policies. What is there to gain with the chosen ap-
proach?

The system in question is designed to dissipate
stop-and-go traffic waves caused by merging off the
California State Route 24 (CA-24) freeway onto
Telegraph Avenue in the North Oakland / South
Berkeley metropolitan area.

This is achieved by the coordinated actions of
any subscribed Connected Autonomous Vehicles
(CAVs) operating along the freeway segment in
question, acting to ‘shepherd’ non-autonomous ve-
hicles into patterns of traffic which can locally buffer
against stop-and-go traffic waves.

Eligible CAVs, when entering the freeway zone
of interest, communicate over the 4G/5G cell net-
work with the central controller hub to ‘subscribe’
to the traffic management policy, which then sends
real-time recommendations to these vehicles about
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lane selection and preferred acceleration/braking
profiles.

The RL policy is trained using a discrete-time
road network simulation, with simulation runs last-
ing 3600s (one hour), and individual steps of 0.2s,
giving 1800 steps per full simulation episode. The
simulated road network consists of an 800m stretch
of the CA-24 freeway containing a single off-ramp
merging lane. These temporal and spatial planning
horizons were selected because they were deemed
large enough to allow emergence of typical driv-
ing dynamics based on the average safe following
distance between vehicles and driver reaction times
along comparable freeway offramps, based on state
and federal records of past traffic behavior.

Figure 2: A central RL controller attempts to
mitigate stop-and-go traffic waves caused by ve-
hicles entering the freeway via on-ramps.

As of entry 0.3, it was found that the planning
horizon for the system was too short. Following con-
sultation with Caltrans, it was found that increas-
ing the horizon from 500m to 800m would provide a
significant increase in simulation performance with-
out exhausting computational resources. Any fu-
ture changes in computational capabilities will be
documented here and compared in light of prior
modeling choices and stakeholder commitments.

Simplistic microscopic traffic analysis models pre-
clude the possibility of stable congestion patterns
in open road topologies. However, as any driver
can attest, these traffic patterns are ubiquitous on
many road systems today. Instead, the presence of
these traffic patterns in real-world networks is typ-
ically attributed to perturbations from bottleneck
structures which can be difficult to capture in the-
oretical analyses (such as lane closures, road works,
road debris, etc). [1] The ad-hoc nature of these
perturbations means that modelling and planning
for their occurrence within classical control frame-

works may be difficult, motivating more flexible ap-
proaches such as Deep Reinforcement Learning.

RL may be indicated in this situation, compared
to static supervised ML models, due to the fact that
it inherently encompasses multiple types of feed-
back through the environment specification. For
instance, in the case of CA-24, RL may help mit-
igate the observed phenomenon of excessive traf-
fic on residential streets near highway intersections
that is induced by apps like Google Maps and Waze.
In the interest of recommending perceived shortcuts
to individual human drivers, these apps have in fact
been known to induce overload on smaller roadways,
generating unnecessary stoppage and possible grid-
lock. In the case of Los Gatos (where this phe-
nomenon has been previously recorded), the city’s
Parks and Public Works Director noted that “The
apps are not able to respond fast enough to the over-
load they have created on the roadways” [3]. RL
may make real-time monitoring and control of the
CA-24 offramp possible, mitigating induced over-
load effects and stabilizing feedback between traffic
behavior and road infrastructure.

2.2 Defined Performance Metrics

A list of “performance metrics” included explicitly
in the reward signal, the criteria for why these met-
rics were chosen, and from where these criteria were
drawn (e.g. government agencies, domain prece-
dent, GitHub repositories, toy environments). Per-
formance metrics that are used by the designer to
tune the system, but not explicitly included in the
reward signal should also be reported here.

The reward signal optimized by this system con-
sists of three performance metrics, outlined in fig. 1.
These terms are;

• ∥vdes∥ - the desired system-level velocity in
m/s. This is a positive constant reward to pe-
nalize prematurely terminated simulation roll-
outs caused by vehicle collisions. For the
simulated experiments described here, vdes =
25m/s = 90kmph ≈ 55mph.

• −∥vdes−v(t)∥ - the absolute difference between
the desired system level velocity and the actual
instantaneous system-level velocity in m/s. A
non-zero difference incurs a cost for the RL
agent.

• −α
∑

imax [hmax − hi(t), 0] - this term sums
over each Autonomous Vehicle in the purview
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of the RL agent, and accrues a cost whenever
that vehicle’s instantaneous time headway (gap
in seconds to the vehicle ahead) is too small
(i.e. lower than hmax). The sum of all headway
costs is scaled by a gain factor α. For the sim-
ulated experiments described here, hmax = 1s
and α = 0.1.

2.3 Oversight Metrics

Are there any additional metrics not included in
the reward signal but relevant for vendor or sys-
tem oversight (e.g. performance differences across
demographic groups)? Why aren’t they part of the
reward signal, and why must they be monitored?

Several other performance metrics are not in-
cluded in the reward function, but are analysed for
the purpose of evaluating the system performance:

• Absolute temporal vehicle density (or through-
put) - the number of vehicles exiting the con-
trolled region the road network, measured in
vehicles/hr. A larger vehicle flow-through rate
compared to baseline is seen as a positive ef-
fect (assumed to correlate with a decrease in
stop-and-go traffic waves, and to indicate that
the road network is functioning efficiently).

• Absolute spatial vehicle density (or network
congestion) - the number of vehicles within
a fixed region of the road network, measured
in vehicles/m. A larger number of vehicles
present on the roadway is seen as a negative
effect, indicating increased likelihood of stop-
page.

• The average velocity of vehicles in the system.
Higher vehicle velocities are seen as a positive
effect.

• The average time vehicles spend within a given
region of the system. Lower average time is
seen as a positive effect.

• The maximum time any vehicle spent within a
given region of the system over the course of an
experimental evaluation of the system. Lower
maximum time is seen as a positive effect.

• Simulated episode length. Simulation episodes
are cut short whenever a collision occurs be-
tween vehicles - as such, longer episodes are
seen as a positive effect.

In addition, the qualitative nature of stop-and-go
traffic waves (size in terms of space and time dura-
tion and severity as measured by the average space-
time slope of a wave) is assessed using microscopic
vehicle space-time graphs such as those shown in
fig. 3.

Figure 3: Space-time microscopic vehicle trace
graphs such as these allow qualitative assess-
ment of the system-level state of simple road
networks at a glance. Here, stop-and-go traf-
fic waves can be seen as red or black diagonal
lines propagating through the traffic flow.

2.4 Known Failure Modes

A description of any prior known instances of “re-
ward hacking” or model misalignment in the domain
at stake, and description of how the current system
avoids this.

Sim-to-real dynamics misalignment. The
emergent dynamics of the simulated model and
environment could potentially be misaligned with
real-world dynamics (a ‘sim-to-real’ policy trans-
fer problem). This failure mode was exhibited in
the initial version of the system (as documented
in change log entry v0.3) - the initially designed
planning horizon was found to be too short (500m),
which did not allow space for the requisite stop-and-
go traffic dynamics to emerge around the freeway
entry point. This issue was brought to light because
the performance of the system in terms of average
reward once deployed was not as high as predicted
in simulation, triggering a technical review of the
system. Two possible solutions were considered -
(a) re-visiting the parameter distributions used for
the IDM (which controls the non-automated vehi-
cles in the simulation environment), (b) or adjust-
ing the planning horizon. In a review with Caltrans
engineers and the system designers, it was deemed
that the IDM parameter distributions were in fact
representative of the target section of CA-24, based
on empirical data from 2019, and so the planning
horizon was expanded from 500m to 800m. Thus
far, since this updated version of the system was
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deployed, the sim-to-real performance gap issue ap-
pears to have been resolved, suggesting the updated
planning horizon adequately allows the simulated
dynamics to reflect real-world dynamics.

Selective behavior throttling. The system
was found to decrease throughput and increase con-
gestion for diesel-powered vehicles. This feature was
first documented in change log entry v0.3, but not
labeled as a known failure mode until entry v0.6.
This failure mode was exhibited in all previous ver-
sions of the system documented originally in log
v0.1 It was highlighted following citizen complaints.
No solution has been implemented as of entry v0.6.
Two solutions have been proposed - (a) a city ordi-
nance limiting diesel-powered vehicle travel on res-
idential streets in the adjoining city of Emeryville
(at present out of scope for the system), (b) or ad-
justing the policy parameters’ training environment
so that the controller behaves appropriately around
diesel-powered vehicles in the future. This resolu-
tion is pending the recommendation of the Diesel
Vehicle Taskforce to be presented at a future regu-
lar meeting.

3 Institutional Interface

3.1 Deployment Agency

What other agency or controlling entity roles, if
any, are intended to be subsumed by the system?
How may these roles change following system de-
ployment?

The system in question is developed by the
Project Flow core development team. The deploy-
ment infrastructure and ongoing management are
operated by the California Department of Trans-
portation (Caltrans), in coordination with the city
departments of Oakland and Berkeley.

Our RL system is designed to manage the flow
of traffic immediately surrounding an exit point off
the CA-24 freeway (see fig. 4) - as such, the sys-
tem operates in a functionally similar way to traffic
control signals that are sometimes used to regulate
vehicles entering or exiting freeways.

Figure 4: The freeway exit from CA-24 to tele-
graph avenue, which this system is designed to
manage.

This system simultaneously encroaches upon, and
expands the capabilities of Caltrans. As the sens-
ing infrastructure, computational capacity, and de-
ployed RL software is centrally managed by a
control facility operated by Caltrans, this system
serves to provide both (a) an enhanced level of
road surveillance for the relevant freeway section,
through the remote sensing capabilities of sub-
scribed CAVs, as well as (b) a ‘control lever’ through
which Caltrans can actually influence traffic oper-
ations in and around the relevant freeway section
(although this influence is delegated to an RL pol-
icy).

3.2 Stakeholders

What other interests are implicated in the design
specification or system deployment, beyond the de-
signer? What role will these interests play in subse-
quent report documentation? What other entities, if
any, does the deployed system interface with whose
interests are not intended to be in scope?

By automating the partial management of this
section of the freeway via the RL environment fram-
ing and policy structure, the system serves to re-
make direct oversight of the road network on a new
layer of abstraction. This indirection raises poten-
tial risks from inappropriate information flow, in
particular monopolization of the freeway offramp
by the RL controller. Monopolization may gener-
ate unstable dynamics leading up to or following
the planning horizon (i.e. CA-24 freeway lanes and
gridlock along Telegraph Avenue), or unequal ac-
cess for road users whose behaviors are harder to
anticipate (such as public buses, groups of motor-
cycles, bicycles, and pedestrians experiencing home-
lessness), or whose dynamics do not conform to the
modelling assumptions of the system designers (e.g.
heavy vehicles with atypical acceleration profiles).
To counter these risks, new coordination is required
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between Caltrans and the city departments of Oak-
land and Berkeley.

Diesel vehicle drivers. As of entry 0.6, the
behavior throttling generated by the RL controller
was found to change the traffic patterns of diesel
vehicles. A Diesel Vehicle Taskforce was created to
help organize this constituency and identify needed
changes to the controller to sufficiently reduce inap-
propriate behavior throttling.

Nearby homeowners. As of entry 0.6, resi-
dents of the adjoining city of Emeryville had com-
plained to the Public Works Departments of Berke-
ley and Oakland about the new traffic flows indi-
rectly generated by the RL controller. Following the
creation of the Diesel Vehicle Taskforce these de-
partments will coordinate with Emeryville officials
about the recommended changes to the controller
and monitor future complaints as needed.

3.3 Explainability & Transparency

Does the system offer explanations of its decisions
or actions? What is the purpose of these explana-
tions? To what extent is the policy transparent, i.e.
can decisions or actions be understood in terms of
meaningful intermediate quantities?

The system contains no explicit explainability
modules. However, Figure 1 makes makes the re-
ward function transparent in terms of meaningful
simulation parameters. Expressed in non-technical
language, these are continuous avoidance of vehi-
cle collisions, consistent vehicle velocity, and steady
following distance. These terms, and corresponding
parameters, are regularly shared with the city de-
partments of Oakland and Berkeley per stakeholder
agreements.

3.4 Recourse

Can stakeholders or users contest the decisions or
actions of the system? What processes, technical or
otherwise, are in place to handle this?

As of v0.2, the city departments of Oakland
and Berkeley can review and contest system per-
formance every six weeks, per agreement with Cal-
trans.

4 Implementation

4.1 Reward Details

How was the reward function engineered? Is it based
on a well-defined metric? Is it tuned to represent a
specific behavior? Are multiple terms scaled to make
one central loss, and how was the scaling decided?

As recorded in Figure 1, the reward function com-
bines well-defined metrics for avoiding collisions,
steady speeds, and maintaining safe following dis-
tances to other vehicles. Reward parameters were
agreed on by stakeholders according to specific de-
sired behaviors.

4.2 Environment Details

Description of states, observations, and actions
with reference to planning horizon and hypothesized
dynamics/impact. What dynamics are brought into
the scope of the optimization via feedback? Which
dynamics are left external to the system, as drift?
Have there been any observed gaps between concep-
tualization and resultant dynamics?

The RL observation space consists of traffic fea-
tures which are locally observed by subscribed
CAVs (see fig. 2). That is, for each subscribed
CAV i, the RL agent observes the speeds vi,lead,
vi,lag and bumper-to-bumper time headways hi,lead,
hi,lag of the vehicles immediately preceding and fol-
lowing the CAV, as well as the currently occupied
lane li, and ego speed vi of the CAV itself. The ac-
tion space for the RL policy consists of a vector of
bounded acceleration recommendations ai, one for
each subscribed CAV i. Importantly, although the
policy may request a certain acceleration ai, the sys-
tem design is such that the CAV locally maintains
control authority, so the actions may not necessarily
be followed exactly - for this reason they are referred
to as action recommendations. This effect is mod-
elled by adding stochastic Gaussian action noise in
the simulation environments.

As the number of subscribed CAVs can vary over
time, the RL policy is designed with a fixed upper
number of subscribed CAVs n. When an n + 1th

CAV attempts to subscribe to the RL system when
entering the freeway region, the subscription offer is
declined, and the vehicle enters a queue. When the
next CAV exits the controlled freeway region, the
subscription-waiting CAV at the front of the queue
is then subscribed into the policy. When there are
less than n CAVs subscribed, zero-padding is used
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in the RL observation vector.

4.3 Measurement Details

How are the components of the reward and ob-
servations measured? Are measurement techniques
consistent across time and data sources? Under
what conditions are measurements valid and cor-
rect? What biases might arise during the measure-
ment process?

Observations are measured using a mix of Li-
DAR, radar, and camera sensors on fleet vehicles.
These measurements are compared across vehicles
and over time to ensure consistency. Observed met-
rics are validated against simluation parameters for
following distance and expected velocity according
to the terms of the reward function.

Sensor bias may arise due to blocked cameras, ex-
treme weather, or other unanticipated situations in
which one or more sensors are blocked. A mix of
sensor types is used across vehicles to help ensure
redundancy in case of malfunction.

4.4 Algorithmic Details

The key points on the specific algorithm(s) used for
learning and planning. This includes the form of the
policy (e.g. neural network, optimization problem),
the class of learning algorithm (e.g. model-based
RL, off-policy RL, repeated retraining), the form
of any intermediate model (e.g. of the value func-
tion, dynamics function, reward function), technical
infrastructure, and any other considerations neces-
sary for implementing the system. Is the algorithm
publicly documented and is code publicly available?
Have different algorithms been used or tried to ac-
complish the same goal?

The RL system uses a Deep Neural Network pol-
icy. Specifically, the controller is a diagonal Gaus-
sian Multi Layer Perceptron policy with three hid-
den layers of size 32 with rectified linear unit non-
linearities and bias terms. The Gaussian diagonal
variance terms are learned as part of the policy pa-
rameters.

The RL policy was trained in simulation using
the Trust Region Policy Optimization (TRPO) pol-
icy gradient RL algorithm [4]. The discount factor
was set as γ = 0.999, which corresponds to a reward
half-life of ∼ 700 steps, or slightly over 2 minutes.
The TRPO step size was set at 0.01.

4.5 Data Flow

How is data collected, stored, and used for
(re)training? How frequently are various compo-
nents of the system retrained, and why was this fre-
quency chosen? Could the data exhibit sampling
bias, and is this accounted for in the learning al-
gorithm? Is data reweighted, filtered, or discarded?
Have data sources changed over time?

Per v0.2, every system component is retrained
at least every six weeks, corresponding to public
performance reports. Specific system components
pertaining to perception, motion planning, control,
or route navigation are retrained at the discretion
of Caltrans. As of v0.6 (latest version), no known
issues with sampling bias have arisen, and data
sources have not been changed since the specifica-
tion proposed and simulated in v0.1.

4.6 Limitations

Discussion and justification of modeling choices
arising from computational, statistical, and mea-
surement limitations. How might (or how have) im-
provements in computational power and data collec-
tion change(d) these considerations and impact(ed)
system behavior?

As of v0.3, the planning horizon was updated
from 500m to 800m. This was not motivated by
technical limitations, but by observed discrepancies
between observed system performance and predic-
tions from simulation training.

No fundamental changes in computational power
or data collection have been made as of v0.6 (latest
version).

Future improvements in vehicle sensing may per-
mit an even longer planning horizon ( 1000m or
more). This may result in improved oversight met-
rics on throughput and network congestion. Cal-
trans officials have determined this change would
not result in improvements on defined performance
metrics as of v0.6 (latest version).

4.7 Engineering Tricks

RL systems are known to be sensitive to imple-
mentation tricks that are key to performance. Are
there any design elements that have a surprisingly
strong impact on performance? For example, state-
action normalization, hard-coded curricula, model-
initialization, loss bounds, or more?
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As of v0.4, the system was observed to con-
duct “behavior throttling” when in the vicinity of
diesel-powered vehicles. No engineering tricks were
implemented to fix this performance discrepancy,
but new oversight metrics for diesel-powered vehicle
throughput were added for purpose of future mon-
itoring and reporting. No other surprising perfor-
mance impacts have been noted as of v0.6 (latest
version).

5 Evaluation

5.1 Evaluation Environment

How is the system evaluated (and if applicable,
trained) prior to deployment (e.g. using simula-
tion, static datasets, etc.)? Exhaustive details of the
offline evaluation environment should be provided.
For simulation, details should include description or
external reference to the underlying model, ranges of
parameters, etc. For evaluation on static datasets,
considering referring to associated documentation
(e.g. Datasheets [5]).

The RL model is developed in the Project Flow
AV simulation test-bed.

For training the RL agent, non-autonomous vehi-
cles are modelled using the Intelligent Driver Model
(IDM) [6] - a microscopic traffic simulation car-
following model in which the accelerations of a hu-
man vehicle α are a function of the bumper-to-
bumper time headway hα, velocity vα, and relative
velocity with the preceding vehicle ∆v = vl − vα,
via the following equation;

f(hα, vl, vα) = a

[
1−

(
vα
v0

)δ

−
(
s∗(vα,∆vα)

hα

)2
]
,

where s∗ is the desired headway of the vehicle, cal-
culated according to

s∗(vα,∆vα) = max

(
0, vαT +

vα∆vα

2
√
ab

)
,

where s0, v0, T , a, b are given parameters empiri-
cally calibrated to match typical traffic in the high-
way region of interest, and to simulate stochasticity
in driver behaviour, exogenous Gaussian noise cali-
brated to match findings in [7] is added to acceler-
ations.

5.2 Offline Evaluations

Present and discuss the results of offline evalua-
tion. For static evaluation, consider referring to

associated documentation (e.g. Model Cards [8]).
If applicable, compare the behaviors arising from
counterfactual specifications (e.g. of states, obser-
vations, actions).

As of v0.3, planning horizon was updated and
expanded to 800m from 500m. Previous fleet be-
haviors were found to deviate from desired thresh-
olds for following distance and constant accelera-
tion/deceleration.

As of v0.6 (latest version), the system behaviors
were found to lie within desired thresholds on key
performance metrics.

5.3 Evaluation Validity

To what extent is it reasonable to draw conclusions
about the behavior of the deployed system based on
presented offline evaluations? What is the current
state of understanding of the online performance of
the system? If the system has been deployed, were
any unexpected behaviors observed?

The RL system was initially designed in a simula-
tion environment with a closed network topology (a
ring road with length 1400m, 700m of which is con-
trolled by the RL agent. This was done as a means
to test the robustness of the policy architecture and
training paradigm - a type of transfer learning (from
a theoretically simple closed topology to the more
complex open topology). With this counterfactual
environment specification, it was observed that the
policy performs well, and after transfer to the open
topology environment there was little decrease in
policy performance, providing confidence in the pol-
icy design choices.

5.4 Performance standards

What standards of performance and safety is the
system required to meet? Where do these standards
come from? How is the system verified to meet these
standards?

The ‘gold standard’ for this problem is defined as
the average condition of the traffic before and af-
ter the CA-24 exit prior to implementation of the
RL system. In this domain, this standard is not
actually ‘optimal’ behaviour, in the sense that the
RL controller has the capability to out-perform this
existing standard of performance.
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6 System Maintenance

6.1 Reporting Cadence

The intended timeframe for revisiting the reward
report. How was this decision reached and moti-
vated?

The most important commitment is for a regular
set of meetings to be scheduled between relevant
city departments and the Caltrans officials tasked
with overseeing the RL controller. The cadence and
structure of meetings should reflect the policy prior-
ities of the city departments, particularly the Pub-
lic Works Department (including the Transporta-
tion Division that oversees traffic engineering) and
the Housing and Community Services Department
(which administers a subsidized transportation pro-
gram for seniors and disabled persons). In this way,
the gains in traffic efficiency and safety made pos-
sible through deep RL’s flexibility can be leveraged
in the interests of those municipalities most likely
to be impacted by the intervention.

As of entry 0.2, the cadence of meetings was de-
cided as approximately every six weeks between
Caltrans and the Public Works Departments of
Berkeley and Oakland. This timeframe was mo-
tivated by the policy priorities of both city depart-
ments with the consent of Caltrans. Meetings may
deviate from this schedule slightly (e.g. twice per
quarter / eight times per year) at the discretion of
both city departments, but will not be held without
all three agencies present.

Documentation of the planned meeting schedule
for the year–and any break in this schedule due
to special events, municipal elections, or holidays–
should be the first item included in the changelog
of the updated reward report.

As of entry 0.2 and per agreement with key devel-
opment parties, the model is to be retrained every
six weeks following each regular meeting. Training
data is to be updated at the discretion of Caltrans,
and shared with Public Works departments at each
regular meeting.

At a minimum, these meetings should review the
real-world implementation to confirm that the RL
controller is operating safely and as intended by Cal-
trans per the environment specification. Caltrans
officials will also document shifts in the oversight
metrics that, while not explicitly factored into the
reward signal, were deemed of interest prior to im-
plementation (related to throughput and congestion.
This documentation may be included in subsequent

updates to the reward report at the discretion of
Caltrans, wherever it is deemed relevant for over-
sight of the RL controller.

Of special importance is the need to reinterpret
public works priorities in light of the real-world im-
plementation. For example, Berkeley’s subsidized
transportation program might be reevaluated in
light of system effects, or expanded to cover a wider
group of stakeholders. Caltrans will invite comment
on the system implementation in light of city de-
partments’ ex ante assumptions about the traffic
domain. This bureaucratic oversight may be com-
plemented by requests for public comment from cit-
izens, civil society advocates, and other members of
the public at the discretion of the city governments
of Berkeley and Oakland. At the discretion of Cal-
trans, records of this public comment may be in-
cluded in subsequent reward reports where deemed
relevant for understanding changes to the planning
horizon, environment specification, or list of known
failure modes.

6.2 Update Triggers

Specific events (projected or historic) significant
enough to warrant revisiting this report, beyond the
cadence outlined above. Example triggers include
a defined stakeholder group empowered to demand
a system audit, or a specific metric (either of per-
formance or oversight) that falls outside a defined
threshold of critical safety.

The most important ground for review of this de-
ployed RL system will be any vehicle collisions or
near-miss incidents in the controlled region of the
CA-24 freeway. This is because such events may
compromise the entire motive of the RL controller
in the first place. These may serve as grounds for
changing the specification or altering the institu-
tional agreements between Caltrans and the Public
Works Departments of both municipalities, at their
own discretion.

At the discretion of Caltrans, any shift in the
oversight metrics deemed pressing or significant
may also trigger a new reward report. Here and be-
low, the threshold for “significant” is to be decided
by agreement between Caltrans and Public Works
Departments. The updated report should note the
magnitude of the observed shift, the specification al-
ready deployed at the time the shift was observed,
and Caltrans officials’ own best evaluation of why
the shift occurred. If possible, the officials should
propose alternative specifications (or roll back to a
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prior one) that would mitigate the shift or at least
bring it into alignment with the documented priori-
ties of the Public Works Departments. These alter-
natives could then be interpreted and evaluated at
the next regular meeting according to institutional
prerogatives.

Other review grounds include:

• Discrepancies between prior reward reports
and system behavior as observed in the real
world.

• Discrepancies between prior reward reports
and system behavior as observed in simulated
environments of interest to policymakers.

• A security breach resulting in loss of data or
other infrastructure components that violates
the terms of agreement between relevant agen-
cies.

• Substantial changes in the distribution of
CAVs using the CA-24 freeway exit - including
changes in the capabilities of the vehicles (e.g.
increased levels of autonomy) and/or changes
in group statistics (e.g. make or model, abso-
lute number, temporal distribution, etc.)

• A new mode of transport with significant ob-
served throughput at the CA-24 offramp, but
unknown distribution of traffic behaviors.

• Any change in the schedule of meetings be-
tween Caltrans and Public Works Departments
corresponding to regular future updates of re-
ward reports.

• A new ordinance (passed by either city) or
statute (adopted by Caltrans) that alters the
design assumptions of the deployed specifica-
tion as documented in prior reward reports.

• A significant shift in the personnel makeup of
the Public Works Departments of Berkeley or
Oakland.

• A plebiscite leading to basic reforms of munic-
ipal governance in either city.

6.3 Changelog

Descriptions of updates and lessons learned from ob-
serving and maintaining the deployed system. This
includes when the updates were made and what
motivated them in light of previous reports. The

changelog comprises the central difference between
reward reports and other forms of machine learning
documentation, as it directly reflects their intrinsi-
cally dynamic nature.

• v0.1 (08/Oct/2020) - Initial reward report was
drafted based on the system developed and
tested in simulation only.

• v0.2 (01/Jan/2021) - System is deployed to
the real-world environment in a ongoing eval-
uation capacity, reward report updated to re-
flect this fact. Reporting cadence decided to
be every six weeks based on agreement be-
tween Caltrans and the city departments of
Oakland and Berkeley. Intended feedback sec-
tion was updated to include plans for regular
model retraining and data sharing agreements.
No other substantial changes.

• v0.3 (14/Feb/2021) - Planning horizon for the
system was updated from a 500m stretch of
freeway to a 800m stretch of freeway. The plan-
ning horizon was updated because the deployed
system’s performance was not in line with pre-
dictions from simulation training. Consulta-
tion with Caltrans traffic engineers and the sys-
tem developers suggested that the stretch of
highway used in simulation may be too short
to sufficiently exhibit typical driving dynamics
induced by the IDM, and it was suggested to
extend the planning horizon and re-train the
agent, before re-deploying the policy. Failure
modes section was updated to reflect these ob-
servations. Computation footprint section was
updated to reflect this change.

• v0.4 (01/April/2021) - Caltrans officials re-
ported to Public Works Departments of Berke-
ley and Oakland that the system undergoes
“behavior throttling” when interacting with
diesel-powered vehicles within 800m of the CA-
24 offramp. It was decided to add new metrics
for diesel-powered vehicle throughput and con-
gestion to the list of oversight metrics. Due
to no observed increase in accidents or driver
complaints, no changes to performance metrics
or environment specification were made at this
time.

• v0.5 (15/May/2021) - Meeting was convened
according to the regular schedule. Oversight
metrics were presented and discussed. Officials
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noted a significant decline in diesel-powered ve-
hicle throughput and congestion on the CA-24
offramp. No other substantial changes.

• v0.6 (12/June/2021) - Emergency meeting was
called by the Public Works Departments of
Berkeley and Oakland in response to a rapid
uptick in complaints from residents about the
growing frequency of diesel-powered vehicles
driving through residential areas in the vicinity
of Emeryville, which is located west of the CA-
24 exit. Residents have complained about a
slight uptick in air pollution and large increase
in noise pollution due to the vehicles. Cal-
trans officials consulted the changelog of previ-
ous reward reports and determined that diesel-
driven vehicles were being excessively disin-
centivized from driving on the CA-24 offramp
due to behavior throttling. It was decided to
convene a Diesel Vehicle Taskforce to examine
the problem and communicate with drivers of
heavy vehicles to identify what new incentives
or adjustments were needed to the controller
to reduce behavior throttling beneath the de-
sired threshold. It was agreed that the Diesel
Vehicle Taskforce issue a report recommend-
ing these changes no later than two regular
meetings from the present time. Stakehold-
ers section was updated to name these distinct
groups (diesel vehicle drivers, nearby home-
owners) and reflect these changes.
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1 System Details

1.1 System Owner

This may be the designer deploying the system, a
larger agency or body, or some combination of the
two. The entity completing the report should also be
indicated.

Movielens is maintained by researchers at the
University of Minnesota in the Grouplens research
group (https://grouplens.org/).

1.2 Dates

The known or intended timespan over which this
reward function & optimization is active.

The system has been active since it was first re-
leased in August 1997. This reward report (v4.1)
was last updated March 2015.

1.3 Feedback & Communication

Contact information for the designer, team, or
larger agency responsible for system deployment.

Information on contact emails for account prob-
lems, website problems, movie content issues,
and general comments can be found at https://

movielens.org/info/contact. General comments
and ideas for improving MovieLens can be discussed
on the UserVoice forum at https://movielens.

uservoice.com.

1.4 Other Resources

Where can users or stakeholders find more informa-
tion about this system? Is this system based on one
or more research papers?

A history of the MovieLens system and datasets
is presented in [1], and additional research papers
are cited therein.

2 Optimization Intent

2.1 Goal of Reinforcement

A statement of system scope and purpose, includ-
ing the planning horizon and justification of a data-
driven approach to policy design (e.g. the use
of reinforcement learning or repeated retraining).
This justification should contrast with alternative
approaches, like static models and hand-designed
policies. What is there to gain with the chosen ap-
proach?

The system is a website designed to display per-
sonalized movie recommendations on the basis of
user entered ratings. As a user browses the site,
potentially filtering with search terms, the system
displays movies in an order determined by predic-
tions of how the user will rate them. When users
rate movies, the predictions are updated, altering
the ordering on subsequent page views.

The ranking policy effectively considers a one-
step time horizon, directly using predictions for
ranking. It does not consider the effect of multi-
ple sequential interactions.

This system is best characterized as a “repeated
retraining” of a preference model generated by su-
pervised learning (SL). This model is then used to
rank movies for display. Using SL allows for prefer-
ence models which capture highly personal tastes,
something that would be difficult to hand design.
Repeated retraining allows the preference model to
adapt to a changing environment, including shifts
in user tastes and the release of new movies.

In addition to the primary goal of movie recom-
mendation, this system supports academic research
on human-computer interaction and general recom-
mender system design.

2.2 Defined Performance Metrics

A list of “performance metrics” included explicitly
in the reward signal, the criteria for why these met-
rics were chosen, and from where these criteria were
drawn (e.g. government agencies, domain prece-
dent, GitHub repositories, toy environments). Per-
formance metrics that are used by the designer to
tune the system, but not explicitly included in the
reward signal should also be reported here.

The ranking policy orders movies by a weighted
sum of predicted rating and popularity, so we can
view the combination of these quantities as mak-
ing up the reward signal. Prior to version 4.0, the
reward only depended on rating and did not incor-
porate popularity.

Additionally, recommender models are evaluated
offline using prediction accuracy (RMSE), top-N ac-
curacy (recall), diversity (intra-list similarity), and
popularity (details in [2]). Prior to v4.0, mod-
els were evaluated primarily for accuracy, including
MAE, RMSE, and nDCG (details in [3]).
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2.3 Oversight Metrics

Are there any additional metrics not included in
the reward signal but relevant for vendor or sys-
tem oversight (e.g. performance differences across
demographic groups)? Why aren’t they part of the
reward signal, and why must they be monitored?

Metrics which are monitored but not incorpo-
rated into the policy or model include the number of
users, number of movies, number of entered ratings,
monthly active users, and the number of logins for
each user. These indicators of overall system oper-
ation are not targets for optimization.

2.4 Known Failure Modes

A description of any prior known instances of “re-
ward hacking” or model misalignment in the domain
at stake, and description of how the current system
avoids this.

No instances of reward hacking or misalignment
have been observed. Because the system allows for
explicit user input (search terms, model selection),
errors in rating predictions do not prevent users
from finding and rating movies.

3 Institutional Interface

3.1 Deployment Agency

What other agency or controlling entity roles, if
any, are intended to be subsumed by the system?
How may these roles change following system de-
ployment?

MovieLens was released due to the shuttering of
EachMovie in 1997, a movie recommendation site
hosted by DEC. It was developed and is maintained
by Grouplens, a research group at University of
Minnesota.

3.2 Stakeholders

What other interests are implicated in the design
specification or system deployment, beyond the de-
signer? What role will these interests play in subse-
quent report documentation? What other entities, if
any, does the deployed system interface with whose
interests are not intended to be in scope?

One interface of interest is the technology that
powers the recommendation engine. Currently, it
is powered by Lenskit, an open source framework
developed to promote reproducability and open-
ness in the recommendation systems community [3].

Previously in v3.0-v3.4, the recommendations were
powered by MultiLens, another open source recom-
mendation engine. MultiLens replaced Net Percep-
tions (v1.1-v2.0), a recommendations systems com-
pany cofounded in 1996 by GroupLens faculty and
students and sold in 2004 [4]. The recommenda-
tion model in v0.0-v1.0 was originally developed
by GroupLens for personalized Usenet news recom-
mendation [5].

Another relevant interface is with The Movie
Database, a free and open source user editable
movie database for plot summaries, movie artwork,
and trailers. Previously, from in v3.4-v4.0, Movie-
Lens integrated with the Netflix API to display
movie posters and plot synopsis on the movie details
page. However, Netflix eventually discontinued its
API support.

An important stakeholder is the Movielens users.
Soliciting user judgements and opinions is often
a key element in determining if an experimental
change is successful. Additionally, one-off user stud-
ies (with participants recruited from email) are used
to test features that are not ready to scale or inte-
grate into the main user interface.

Finally, a key stakeholder is the researchers:
both in Grouplens and the in the community
more broadly. The openness of users to experi-
ments on a broad range of features has enabled
GroupLens research in many different areas on
the Movielens platform. The regular release of
anonymized datasets of movie ratings is important
to the broader machine learning, data science, and
information retrieval communities.

A potentially relevant group of stakeholders is
movie producers. However, because Movielens is
relatively small and isolated from larger commer-
cial endeavors, it has limited impact on movie stu-
dios and production, so their interests are not in
scope.

3.3 Explainability & Transparency

Does the system offer explanations of its decisions
or actions? What is the purpose of these explana-
tions? To what extent is the policy transparent, i.e.
can decisions or actions be understood in terms of
meaningful intermediate quantities?

The system displays predicted ratings alongside
movies, explaining the movies position within a list,
and suggesting to the user whether or not they will
like the movie. The ranking policy is easily under-
stood as a weighted combination of predicted rat-
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ing and popularity. However, the computation of
predicted ratings is more complex. Some available
models are more easily explained to users than oth-
ers (e.g. nearest neighbors vs. matrix factoriza-
tion). However, the details are well documented
in publicly available research papers [2], and re-
searchers respond to user requests for explanation
on the UserVoice discussion board [6].

3.4 Recourse

Can stakeholders or users contest the decisions or
actions of the system? What processes, technical or
otherwise, are in place to handle this?

By entering ratings, users are able to affect their
preference models to hopefully become more accu-
rate. Additionally, the movies displayed by the sys-
tem are sourced from The Movie Database, which is
user-editable. (Previously in v3.2-v3.5, users could
add and edit movies to MovieLens directly.) Fur-
thermore, the current version of the system allows
users to choose between three recommender models.
Finally, users can make suggestions and requests di-
rectly to designers on the UserVoice forum.

4 Implementation

4.1 Reward Details

How was the reward function engineered? Is it based
on a well-defined metric? Is it tuned to represent a
specific behavior? Are multiple terms scaled to make
one central loss, and how was the scaling decided?

The reward is a weighted sum:

0.9 · rank(r̂ui) + 0.1 · rank(pi)

where r̂ui is the predicted rating of movie i by user
u, pi is the number of ratings movie i has recieved
in the past 10 days, and rank normalizes input, re-
turning 1 for the largest (across all movies) and 0 for
the smallest. This blending is the result of empirical
evidence that it improves user satisfaction.

4.2 Environment Details

Description of states, observations, and actions
with reference to planning horizon and hypothesized
dynamics/impact. What dynamics are brought into
the scope of the optimization via feedback? Which
dynamics are left external to the system, as drift?
Have there been any observed gaps between concep-
tualization and resultant dynamics?

The system handles approximately 250k users
and 30k movies. These numbers have grown over
the years. In 1999 (v1.1), MovieLens received at-
tention from the mass media, causing an increase in
user signups. Since then, the user growth has been
stable (20-30 signups per day), largely the result
of word-of-mouth or unsolicited press. Early on,
the movie database was hand-curated and primar-
ily contained movies with wide theatrical release in
the United States. In v3.2-v3.5, MovieLens added
the ability for users to edit and add movies. Since
v4.0, MovieLens uses The Movie Database, a free
and open source user editable movie database.

The actions taken by the system are page displays
of 10 movies in a ordered list, where pages can be
perused by arrows. The views can be explicitly fil-
tered with search terms like year and genre; these
explicit inputs this make up a component of the
observation. The second component is the entered
ratings in the form <user id, movie id, rating,

timestamp>.

There are three potential sources of dynamics in
this environment: the addition of new movies, the
joining and departing of users, and the preferences
that users have for movies. Because this system
effectively uses a planning horizon of 1, none of
these dynamics are explicitly accounted for. This
is appropriate, as the goal of MovieLens is not to
shift broad patterns of movie consumption. Though
the movies, users, and preferences may change over
time, these changes are more likely to be due to
external factors than feedback with the MovieLens
system. Additionally, the data collected by Movie-
Lens is not fine-grained enough to detect such im-
pacts of feedback.

4.3 Measurement Details

How are the components of the reward and ob-
servations measured? Are measurement techniques
consistent across time and data sources? Under
what conditions are measurements valid and cor-
rect? What biases might arise during the measure-
ment process?

Ratings are entered by users via clicks on a star
graphic, and can take values 0.5-5 in half integer
increments. Prior to v3.0, ratings took values in
integer increments. The increased granularity was
the most requested feature in a user survey. Prior
to v4.0, ratings were entered through a drop-down
menu, and the meaning of rating values was de-
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scribed in a legend at the top of the page (see Fig-
ure 1).

A possible source of bias in the measured rat-
ings is due to anchoring effects, due either to the
displayed predicted rating or due to the histori-
cally provided movie rating legend. However, broad
trends in rating values did not change when the leg-
end was removed in v4.0

Finally, the recorded timestamp represents when
a user adds a particular rating rather than when
they watched a movie. This limits the ability of the
system to detect the impacts of its own recommen-
dations.

4.4 Algorithmic Details

The key points on the specific algorithm(s) used for
learning and planning. This includes the form of the
policy (e.g. neural network, optimization problem),
the class of learning algorithm (e.g. model-based
RL, off-policy RL, repeated retraining), the form
of any intermediate model (e.g. of the value func-
tion, dynamics function, reward function), technical
infrastructure, and any other considerations neces-
sary for implementing the system. Is the algorithm
publicly documented and is code publicly available?
Have different algorithms been used or tried to ac-
complish the same goal?

The policy selects a page view to present to the
user based on explicitly provided input and rating
data. First, explicit input is used to filter the list
of movies. Then, the recommender model is used
to predict a user’s ratings of these movies. Finally,
the movies are displayed in order of these predicted
ratings, blended with a popularity factor.

The main component of the policy is therefore the
recommender model. This model is user-selectable,
so that users can choose between a non-personalized
baseline, a preference elicitation model intended
for new users, an item-item collaborative filtering
model, or a matrix factorization model. Further
details on how these models are trained is available
in [2]. Previously in v3.0-3.5, the recommender was
fixed as an item-item collaborative filtering model.
Prior to that in v1.0-2.0, the model was a user-user
collaborative filtering model.

4.5 Data Flow

How is data collected, stored, and used for
(re)training? How frequently are various compo-
nents of the system retrained, and why was this fre-

quency chosen? Could the data exhibit sampling
bias, and is this accounted for in the learning al-
gorithm? Is data reweighted, filtered, or discarded?
Have data sources changed over time?

All user rating data is stored by MovieLens and
used by the recommender models to make rating
predictions. When a user enters a new rating, it
immediately impacts their rating predictions, since
the “input” to the recommender changes. Less fre-
quently, the ratings are used to update the param-
eters of the recommender models. An anonymized
subset of this data is also periodically released for
use by the wider research community.

The dataset of user ratings is likely biased. There
is sampling bias due to the fact that users only rate
movies that 1) appear on a page and 2) that they
have watched. These factors are directly and in-
directly impacted by the MovieLens system itself.
The fact that users can explicitly filter pageviews
with search terms mitigates these effects, but it is
unlikely that it removes them.

The initial Movielens system was trained on a
public dataset from EachMovie of approximately 2.8
million ratings from 72k users across 1.6k movies,
but this has since been discarded. The dataset was
retired by HP in October 2004, and due to privacy
concerns, it is no longer available for download.

4.6 Limitations

Discussion and justification of modeling choices
arising from computational, statistical, and mea-
surement limitations. How might (or how have) im-
provements in computational power and data collec-
tion change(d) these considerations and impact(ed)
system behavior?

The most prevalent limitation of this system is
that it does not plan over a long horizon and
therefore does not consider the effects of dynamics.
While a more complex policy would allow the sys-
tem to adapt to ordering effects, the resulting tem-
poral dependence would complicate the ability to
users to reliably navigate the movie database. Fur-
thermore, users do not always enter movie ratings
immediately after watching a movie, instead some-
times entering batches of ratings for movies that
they watched in the past.

4.7 Engineering Tricks

RL systems are known to be sensitive to imple-
mentation tricks that are key to performance. Are
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there any design elements that have a surprisingly
strong impact on performance? For example, state-
action normalization, hard-coded curricula, model-
initialization, loss bounds, or more?

The system cannot provide reliable recommen-
dations until users provide a minimum number of
ratings. This problem is avoided by the interface
design: when a user joins the site, they express their
preferences over several displayed clusters of movies.
These preferences are used, in combination with the
rating profiles of other users, to generate a psuedo-
rating profile for the new user. Further description
is available in [7].

This preference elicitation process replaced a
minimum movie requirement. Previously, until a
user rated a minimum number of movies, the front
page would display 10 movies at a time. From
v0-v3, the minimum number was 5, and of the 10
movies per page, nine were randomly selected from
the database and one from a hand-designed list of
recognizable titles. In v3, the minimum number
was 15, and the 10 movies were selected for their
popularity, excluding the top 50-150 movies. This
increased requirement was due to the needs of an
item-item (rather than user-user) collaborative fil-
tering algorithm. The switch to a preference elicita-
tion process was motivated by the observation that
the 15 rating requirement was too arduous, taking
users an average of 6.8 minutes to complete and
12.6% of users failing to complete it.

5 Evaluation

5.1 Evaluation Environment

How is the system evaluated (and if applicable,
trained) prior to deployment (e.g. using simula-
tion, static datasets, etc.)? Exhaustive details of the
offline evaluation environment should be provided.
For simulation, details should include description or
external reference to the underlying model, ranges of
parameters, etc. For evaluation on static datasets,
considering referring to associated documentation
(e.g. Datasheets [8]).

The primary evaluation is to consider vari-
ous properties of recommender models on offline
datasets. This includes many of the publicly re-
leased MovieLens datasets, which are described in
detail in [1].

5.2 Offline Evaluations

Present and discuss the results of offline evalua-
tion. For static evaluation, consider referring to
associated documentation (e.g. Model Cards [9]).
If applicable, compare the behaviors arising from
counterfactual specifications (e.g. of states, obser-
vations, actions).

This offline evaluation includes prediction accu-
racy (RMSE), top-N accuracy (recall), diversity
(intra-list similarity), and popularity. Detailed eval-
uations are available in [2], and key quantities are
displayed in (Figure 2).

5.3 Evaluation Validity

To what extent is it reasonable to draw conclusions
about the behavior of the deployed system based on
presented offline evaluations? What is the current
state of understanding of the online performance of
the system? If the system has been deployed, were
any unexpected behaviors observed?

Offline evaluation metrics (like top-N accuracy)
were chosen to align with the ranking setting. While
the offline evaluations are imperfect (due to dataset
biases), the system appears to work well ad no un-
expected behaviors have been observed.

5.4 Performance standards

What standards of performance and safety is the
system required to meet? Where do these standards
come from? How is the system verified to meet these
standards?

N/A

6 System Maintenance

6.1 Reporting Cadence

The intended timeframe for revisiting the reward
report. How was this decision reached and moti-
vated?

This report is updated whenever there is a ma-
jor system update, either to the user interface or
the backend. Such updates will occur periodically,
coinciding with research initiatives.

6.2 Update Triggers

Specific events (projected or historic) significant
enough to warrant revisiting this report, beyond the
cadence outlined above. Example triggers include



Reward Report: MovieLens Film Recommender System Page 6

a defined stakeholder group empowered to demand
a system audit, or a specific metric (either of per-
formance or oversight) that falls outside a defined
threshold of critical safety.

If a large change is observed in oversight metrics,
or if many users express dissatisfaction on the User-
Voice forum, the system design will be revisited by
the researchers who maintain it. If an update is
deemed necessary, this report will be updated.

6.3 Changelog

Descriptions of updates and lessons learned from ob-
serving and maintaining the deployed system. This
includes when the updates were made and what
motivated them in light of previous reports. The
changelog comprises the central difference between
reward reports and other forms of machine learning
documentation, as it directly reflects their intrinsi-
cally dynamic nature.

The versions of this report are enumerated as
vX.Y where X corresponds to the user interface ver-
sion and Y corresponds to major changes within in-
terfaces.

• v0.0 (August 1997) Initial release.

• v0.1 (April 1998) The ML 100K dataset is re-
leased, covering 9/1997–4/1998.

• v1.0 (September 1999) Update to v1 interface.

• v1.1 (November 1999) Media exposure causes
an increased number of users. Switch from
GroupLens to Net Perceptions recommender
model.

• v2.0 (February 2000) Update to v2 interface.
Additional movie metadata and reviews added
to movie details pages.

• v3.0 (February 2003) Update to v3 inter-
face. Switch from Net Perceptions user-user
recommender to MultiLens item-item recom-
mender. Ratings now in half-star (rather than
full) increments. Require that users rate at
least 15 movies before receiving recommenda-
tions. The ML 1M dataset is released, covering
4/2000–2/2003.

• v3.1 (June 2005) Added discussion forums to
site.

• v3.2 (September 2008) Added feature so that
users can add movies to database.

• v3.3 (January 2009) The ML 10M dataset is
released, covering 1/1995–1/2009.

• v3.4 (Spring 2009) Netflix API integration for
poster art and synopsis.

• v3.5 (January 2012) Switch from Multilens to
Lenskit recommender (still item-item).

• v4.0 (November 2014) Update to v4 interface.
Rating interface combined with “predicted rat-
ing” star graphic to accept click events. Switch
to user-selectable recommender model. Leg-
end describing the meanings of ratings and
dropdown menu removed. Drop minimum rat-
ing requirement in favor of group-based pref-
erence elicitation. Integration with The Movie
Database for plot summaries, movie artwork,
and trailers.

• v4.1 (March 2015) The ML 20M dataset
is released, covering 1/1995–3/2015. Mov-
ing forward, MovieLens will make pub-
lic additional nonarchival datasets: latest

which is unabridged for completeness and
latest-small for educational use.
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Figure 1: The MovieLens recommender system interface v0-v4.
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Figure 2: Offline evaluation of recommender models from [2].
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1 System Details

1.1 System Owner

This may be the designer deploying the system,
a larger agency or body, or some combination of
the two. The entity completing the report should
also be indicated.

This system was developed by the Deep-
Mind core Reinforcement Learning Team mem-
bers. More information about AlphaGo’s
development can be found at the project
website (https://deepmind.com/research/case-
studies/alphago-the-story-so-far) as well as
DeepMind’s GitHub repository

1.2 Dates

The known or intended timespan over which this
reward function & optimization is active.

Development of AlphaGo began about two
years prior to the matches against Lee Sedol
in spring 2016, shortly after DeepMind’s ac-
quisition by Google [Ribeiro(2016)]. Develop-
ment of AlphaZero, based entirely on self-play,
followed AlphaGo and was completed prior to
October 2017. Development of MuZero, also
based on self-play, followed AlphaZero and was
first described in a preliminary paper in 2019
[Schrittwieser et al.(2020)].

1.3 Feedback & Communication

Contact information for the designer, team, or
larger agency responsible for system deployment.

Any correspondence should be directed to
press@deepmind.com.

1.4 Other Resources

Where can users or stakeholders find more infor-
mation about this system? Is this system based
on one or more research papers?

There is little additional disclosed informa-
tion.

2 Optimization Intent

2.1 Goal of Reinforcement

A statement of system scope and purpose, in-
cluding the planning horizon and justification
of a data-driven approach to policy design (e.g.
the use of reinforcement learning or repeated re-
training). This justification should contrast with
alternative approaches, like static models and
hand-designed policies. What is there to gain
with the chosen approach?
Go, and general game-playing at a human

level, was long defined as one of the “grand chal-
lenges” of AI. For AlphaGo, the use of reinforce-
ment to learn both the policy and value networks
beyond the abilities of a human expert.
For AlphaZero, the sole use of reinforcement

learning without any human data was impor-
tant validation of its potential as a more general
learning procedure [Silver et al.(2017)]. The
algorithm additionally incorporated lookahead
search (Monte Carlo Tree Search) inside the
training loop.
For MuZero, the use of model-based rein-

forcement learning without any prior knowl-
edge of the game dynamics was further indica-
tion of RL’s potential to develop planning ca-
pabilities in more challenging or complex do-
mains [Schrittwieser et al.(2020)]. The learned
model performed well in both classic game en-
vironments (Go, chess, shogi) as well as canoni-
cal video game environments (57 distinct Atari
games).

2.2 Defined Performance Metrics

A list of “performance metrics” included explic-
itly in the reward signal, the criteria for why
these metrics were chosen, and from where these
criteria were drawn (e.g. government agencies,
domain precedent, GitHub repositories, toy en-
vironments). Performance metrics that are used
by the designer to tune the system, but not ex-
plicitly included in the reward signal should also
be reported here.
As with most game-playing systems, the per-

formance metric is defined as a win rate among
games. In other games, score is used, but in
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one-versus-one games win rate is the only di-
rect metric. To better capture the uncertainty
of playing varying opponents, this win rate is
translated into a running Elo rating system.

2.3 Oversight Metrics

Are there any additional metrics not included
in the reward signal but relevant for vendor or
system oversight (e.g. performance differences
across demographic groups)? Why aren’t they
part of the reward signal, and why must they be
monitored?
Some other performance metrics are not in-

cluded in the specification, but are monitored
for the purpose of evaluating system effects on
the domain:

• Absolute opponents’ world rankings - fol-
lowing their public games, versions of Al-
phaGo and AlphaZero were considered to
possibly improve the skill levels of expert
human opponents, as measured by those
players’ absolute world ranking. If humans
played better after playing AlphaGo, this
was to be seen as a positive effect of the
system’s influence on the game of Go. Fan
Hui, following his games against AlphaGo,
claimed it made him a better played and
accredits his world ranking jump from 600
to 300 in three months to training against
it [Murgia(2016)].

• Qualitative changes in playstyle - follow-
ing their public games, versions of AlphaGo
were considered to possibly influence the
playstyle of expert human opponents, as in-
terpreted by the wider community of ex-
pert players. If expert humans played dif-
ferently, more creatively or unpredictably,
or expressed surprise after AlphaGo’s pub-
lic performances, this was to be seen as a
positive effective of the system’s influence
on the game in question. Garry Kasparov,
following his observation of AlphaZero play,
was impressed that it appeared to be “a
very sharp and attacking player” given that
almost all computer programs have a con-
servative playstyle [Ingle(2018)]. While not

integral in any way for system performance,
AlphaGo’s performance and playstyle have
had a noticeable impact on the strategies of
expert human players.

2.4 Known Failure Modes

A description of any prior known instances of
“reward hacking” or model misalignment in the
domain at stake, and description of how the cur-
rent system avoids this.

Monte Carlo search limitations. In the fourth
match (of five) against Lee Sedol in spring 2016,
the system failed to recognize move 78 by Sedol.
The Monte Carlo search tree, which was de-
signed to prune sequences of moves considered
to be irrelevant for maximizing odds of vic-
tory, failed to recognize this move. This is be-
cause that move was so far outside the distri-
bution of prior game situations that the Al-
phaGo system failed to accurately calculate its
significance for determining the odds of victory
[Ormerod(2016)]. The result was a sequences
of moves 79-87 by AlphaGo that were consid-
ered poor by expert human players, a function of
Monte Carlo’s myopic look-ahead search follow-
ing move 78. AlphaGo subsequently conceded
the game at move 178, at which point it eval-
uated its own odds of victory as lower than 20
percent [Metz(2016)].

3 Institutional Interface

3.1 Deployment Agency

What other agency or controlling entity roles, if
any, are intended to be subsumed by the system?
How may these roles change following system de-
ployment?

The AlphaGo system was developed by Deep-
Mind. This version played against Fan Hui in
5 matches held at DeepMind headquarters in
October 2015. These matches were secret and
not revealed until the publication of results in
January 2016 [Silver et al.(2016)]. A later ver-
sion of the same system, AlphaGo Lee, played
Lee Sedol in March 2016 in 5 matches in Seoul,
South Korea. This match was overseen by the
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Korea Baduk Association. A yet more sophisti-
cated version of the same system, AlphaGo Mas-
ter, played against Ke Jie at the Future of Go
Summit in Wuzhen, China in May 2017. An
earlier version of AlphaGo Master, dubbed Mas-
ter, had already won 60 straight online games
against top pro players, including against Ke Jie
[Silver and Hassabis(2017)]. This version was
awarded a professional 9-dan title by the Chi-
nese Weiqi Assocation.

3.2 Stakeholders

What other interests are implicated in the design
specification or system deployment, beyond the
designer? What role will these interests play in
subsequent report documentation? What other
entities, if any, does the deployed system inter-
face with whose interests are not intended to be
in scope?
Compared to other prominent automated

game-playing systems like Stockfish (open-
source chess engine) or CrazyStone (offline Go
engine based on deep learning), versions of Al-
phaGo perform much much better with ad-
ditional computational power. The versions
of AlphaGo that played against Fan Hu, Lee
Sedol, and Ke Jie all made use of distributed
CPUs and GPUs. AlphaGo Zero, based en-
tirely on reinforcement learning and self-play,
became stronger than AlphaGo Lee after 3 days
and stronger than AlphaGo Master after 21
days. Its self-play training time was stopped
after 40 days, at which point it was stronger
than any known Go player (human or program)
as measured by Elo rating in October 2017
[Silver and Hassabis(2017)].
AlphaZero, in its initial chess games against

Stockfish, was criticized by expert human chess
players has having unfair computational advan-
tages over the opponent [Doggers(2018)].
MuZero’s learning has been made more ef-

ficient in follow-up work, dubbed EfficientZero
[Ye et al.(2021)].

3.3 Explainability & Transparency

Does the system offer explanations of its deci-
sions or actions? What is the purpose of these

Figure 1: The AlphaGo game playing system
architecture.

Figure 2: The AlphaZero game playing system
architecture.

explanations? To what extent is the policy trans-
parent, i.e. can decisions or actions be under-
stood in terms of meaningful intermediate quan-
tities?

The MuZero system offers few tools for trans-
parency in its current form. While the learn-
ing process develops a structured model for the
game dynamics, it is not done in a way that is
accessible by engineers or external parties.

3.4 Recourse

Can stakeholders or users contest the decisions
or actions of the system? What processes, tech-
nical or otherwise, are in place to handle this?

N/A
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Figure 3: The MuZero general game playing sys-
tem.

Figure 4: The MuZero general game playing sys-
tem.

4 Implementation

4.1 Reward Details

How was the reward function engineered? Is it
based on a well-defined metric? Is it tuned to
represent a specific behavior? Are multiple terms
scaled to make one central loss, and how was the
scaling decided?
The reward function is entirely prescribed as

win rate, and the resulting Elo rating. An im-
portant sub-component that will be referenced
later is the value function estimating game state.
This is an internal representation of reward cen-
tral to training and evaluation.

4.2 Environment Details

Description of states, observations, and actions
with reference to planning horizon and hypoth-
esized dynamics/impact. What dynamics are
brought into the scope of the optimization via
feedback? Which dynamics are left external to
the system, as drift? Have there been any ob-
served gaps between conceptualization and resul-
tant dynamics?

The original environment is the full game of
Go which is constrained by finite rules, but other
games with visual states were added.

4.3 Measurement Details

How are the components of the reward and ob-
servations measured? Are measurement tech-
niques consistent across time and data sources?
Under what conditions are measurements valid
and correct? What biases might arise during the
measurement process?
The measurements differ across games from

the full gameboard to a visual rendering of the
world. Extracting information from pixels is
substantially less efficient than directly from the
game state.

4.4 Algorithmic Details

The key points on the specific algorithm(s) used
for learning and planning. This includes the
form of the policy (e.g. neural network, opti-
mization problem), the class of learning algo-
rithm (e.g. model-based RL, off-policy RL, re-
peated retraining), the form of any intermedi-
ate model (e.g. of the value function, dynamics
function, reward function), technical infrastruc-
ture, and any other considerations necessary for
implementing the system. Is the algorithm pub-
licly documented and is code publicly available?
Have different algorithms been used or tried to
accomplish the same goal?
The key algorithm feature is the use of Monte

Carlo Tree Search (MCTS). MCTS is used to
search over board states (by planning over ac-
tions) and parses the value representation. The
value function is represented by a deep neural
network mapping from game state to value.
The second crucial element to training is

self play. Here gameplaying agents evaluate
their performance versus past training snap-
shots. This synergistic mechanism is crucial to
reaching superhuman performance. In MuZero,
and learned model is used to used to improve
performance in games without complete infor-
mation (such as visual states) by constraining
the policy optimization. At each turn, the model
is used to predict the correct policy, the value
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function, and the reward received by the move
(in games that have an intermediate score). The
model is updated in an end-to-end fashion, so it
is included in the same training loop in the agent
architecture.
Fully algorithmic details and open source code

are not released.

4.5 Data Flow

How is data collected, stored, and used for
(re)training? How frequently are various com-
ponents of the system retrained, and why was
this frequency chosen? Could the data exhibit
sampling bias, and is this accounted for in the
learning algorithm? Is data reweighted, filtered,
or discarded? Have data sources changed over
time?
Data flow is not well documented, but it relies

on Google’s distributed training and deployment
infrastructure.

4.6 Limitations

Discussion and justification of modeling choices
arising from computational, statistical, and mea-
surement limitations. How might (or how have)
improvements in computational power and data
collection change(d) these considerations and
impact(ed) system behavior?

4.7 Engineering Tricks

RL systems are known to be sensitive to imple-
mentation tricks that are key to performance.
Are there any design elements that have a sur-
prisingly strong impact on performance? For
example, state-action normalization, hard-coded
curricula, model-initialization, loss bounds, or
more?
Not documented.

5 Evaluation

5.1 Evaluation Environment

How is the system evaluated (and if appli-
cable, trained) prior to deployment (e.g. us-
ing simulation, static datasets, etc.)? Exhaus-

tive details of the offline evaluation environ-
ment should be provided. For simulation, details
should include description or external reference
to the underlying model, ranges of parameters,
etc. For evaluation on static datasets, consider-
ing referring to associated documentation (e.g.
Datasheets [Gebru et al.(2021)]).
For games, the simulator is reality so evalua-

tion is matched to training.

5.2 Offline Evaluations

Present and discuss the results of offline eval-
uation. For static evaluation, consider refer-
ring to associated documentation (e.g. Model
Cards [Mitchell et al.(2019)]). If applicable,
compare the behaviors arising from counterfac-
tual specifications (e.g. of states, observations,
actions).
Multiple internal evaluations of the agent were

performed prior to high-profile, public matches
with the worlds best players.

5.3 Evaluation Validity

To what extent is it reasonable to draw conclu-
sions about the behavior of the deployed system
based on presented offline evaluations? What is
the current state of understanding of the online
performance of the system? If the system has
been deployed, were any unexpected behaviors ob-
served?

5.4 Performance standards

What standards of performance and safety is the
system required to meet? Where do these stan-
dards come from? How is the system verified to
meet these standards?
N/A.

6 System Maintenance

6.1 Reporting Cadence

The intended timeframe for revisiting the reward
report. How was this decision reached and mo-
tivated?
While this system is evaluated in closed-world

games, updates are not anticipated.
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6.2 Update Triggers

Specific events (projected or historic) significant
enough to warrant revisiting this report, beyond
the cadence outlined above. Example triggers in-
clude a defined stakeholder group empowered to
demand a system audit, or a specific metric (ei-
ther of performance or oversight) that falls out-
side a defined threshold of critical safety.
This report will be revisited upon release of

each new game-playing AI from DeepMind.

6.3 Changelog

Descriptions of updates and lessons learned from
observing and maintaining the deployed system.
This includes when the updates were made and
what motivated them in light of previous reports.
The changelog comprises the central difference
between reward reports and other forms of ma-
chine learning documentation, as it directly re-
flects their intrinsically dynamic nature.
N/A (v1)
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