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Abstract
Predictive multiplicity occurs when classification
models with nearly indistinguishable average per-
formances assign conflicting predictions to indi-
vidual samples. When used for decision-making
in applications of consequence (e.g., lending, ed-
ucation, criminal justice), models developed with-
out regard for predictive multiplicity may result
in unjustified and arbitrary decisions for specific
individuals. We introduce a new measure of
predictive multiplicity in probabilistic classifica-
tion called Rashomon Capacity. We show that
Rashomon Capacity yields principled strategies
for disclosing conflicting models to stakehold-
ers. Our numerical experiments illustrate how
Rashomon Capacity captures predictive multiplic-
ity in various datasets and learning models, in-
cluding neural networks. The tools introduced
in this paper can help data scientists measure, re-
port, and ultimately resolve predictive multiplicity
prior to model deployment. Full paper available
at https://arxiv.org/abs/2206.01295.

1. Introduction
Rashomon effect, introduced by Breiman (2001), describes
the phenomenon where a multitude of distinct predictive
models achieve similar training or test loss. The set of
almost-equally performing models for a given learning prob-
lem is called the Rashomon set (Fisher et al., 2019; Se-
menova et al., 2019). In classification, models across the
Rashomon set can have high predictive multiplicity (Marx
et al., 2020): classifiers with similar average performance
may assign wildly different predictions to a sample.

Predictive multiplicity captures potential individual-level
harm introduced by an arbitrary choice of a single model in
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the Rashomon set. When such a model is used to support
automated decision-making in sectors dominated by a few
companies or Government—labeled Algorithmic Leviathans
in Creel & Hellman (2021, Section 3)—predictive multiplic-
ity results in unjustified and systemic exclusion of individu-
als from critical opportunities and introduce feedback loops
that amplify systemic biases. For example, Governments
are increasingly turning to algorithms for grading exams
that grant access to higher-level education (e.g., UK (Smith,
2020)). Here, accounting for predictive multiplicity is crit-
ical: an arbitrary choice of a single model may lead to an
unwarranted restriction of educational opportunities to an
individual student. In applications such as criminal justice
and healthcare, models that do not account for predictive
multiplicity are at risk of causing individual-level harm by
supporting decisions that may at first appear to be data-
driven, but are in fact the result of arbitrary choices during
training (e.g., parameter initialization). Predictive multiplic-
ity must be reported to stakeholders in, for example, model
cards (Mitchell et al., 2019).

We introduce a new predictive multiplicity metric called
Rashomon Capacity for probabilistic classifiers1. Unlike
prior metrics based on thresholded (i.e., 0 or 1) predictions,
Rashomon Capacity captures more nuanced variations in
scores among models in the Rashomon set for a target input
sample, and possesses several properties that a predictive
multiplicity metric must satisfy to simplify its interpretation
by stakeholders. The computation of Rashomon Capac-
ity also sheds light on a strategy for resolving predictive
multiplicity. Different approaches have been proposed for
dealing with multiplicity, including randomizing between
competing classifiers (Creel & Hellman, 2021) and bag-
ging (Breiman, 2001). However, the size of the Rashomon
set can be large, making strategies that require randomiz-
ing predictions across the entire Rashomon set potentially
arbitrary and impractical. In contrast, we apply standard
results from convex analysis to show that Rashomon Capac-
ity for an input sample can be entirely captured by at most
c models in the Rashomon set, where c is the number of

1A probabilistic classifier is a model that maps an input sample
onto a probability distribution, referred as a score, over a discrete
set of classes. Examples of probabilistic classifiers include logistic
regression and a neural network with a softmax output layer.
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predicted classes. This results holds regardless of the size
of the Rashomon set. Thus, when c is small, the predictions
produced by the competing classifiers can be communicated
to a stakeholder, empowering them to decide how to resolve
conflicting decisions. Omitted proofs, experimental details
and codes will be attached upon acceptance.

2. Related Work
The Rashomon effect impacts model selection (Rudin, 2019;
Hancox-Li, 2020; D’Amour et al., 2020), explainability
(Pawelczyk et al., 2020), and fairness (Coston et al., 2021).
Rudin (2019) suggested that, given the choice of compet-
ing models, machine learning (ML) practitioners should
select interpretable models a priori, rather than selecting a
black-box model with conjectural explanations afterwards.
Hancox-Li (2020) and D’Amour et al. (2020) further ar-
gued that epistemic patterns, e.g., causality, should be speci-
fied in the ML pipeline, and the selected models from the
Rashomon set should be able to reflect these patterns. Com-
peting models in the Rashomon set may not only render
conflicting explanations for predictions (Pawelczyk et al.,
2020) and measures of variables’ importance (Fisher et al.,
2019), but also have inconsistent performance across popu-
lation sub-groups (Coston et al., 2021).

We next introduce notations and existing metrics for mea-
suring predictive multiplicity.

Notations. We consider a dataset D = {(xi,yi)}ni=1 for a
classification task with c classes/labels, where each sample
pair (xi,yi)

i.i.d.∼ PX,Y with support X × ∆c, where ∆c

is the c-dimensional probability simplex. Let [·]j denotes
the jth entry of a vector, ek be a length-c indicator vector,
i.e., [ek]k = 1, and [ek]j = 0 ∀j ̸= k. We denote by
H a hypothesis space, i.e., a set of candidate probabilistic
classifier is parameterized by θ ∈ Θ ⊆ Rd that approximate
PY |X=xi

, i.e., H ≜ {hθ : X → ∆c : θ ∈ Θ}. The loss
function used to evaluate model performance is denoted
by ℓ : ∆c × ∆c → R+ (e.g., cross-entropy) and L̂(h) ≜
1
n

∑n
i=1 ℓ(h(xi),yi) the empirical risk.

Rashomon set and pattern Rashomon ratio. Given a
Rashomon parameter ϵ ≥ 0, Semenova et al. (2019) and
Marx et al. (2020) respectively define a Rashomon set and
an ϵ-level set as R(H, ϵ) ≜ {h ∈ H; L̂(h) ≤ ϵ}. Deter-
mining R(H, ϵ) is essentially a level set estimation problem
(Mason et al., 2021), and is computationally infeasible when
the hypothesis space H is large (Bachoc et al., 2021). For
predictive multiplicity in classification problems, Semenova
et al. (2019, Defn. 12) further proposed pattern Rashomon
ratio for binary classification, which is the ratio of the count
of all possible binary predicted classes given by the func-
tions in the Rashomon set to that given by the functions in

the hypothesis space. Note that the computational complex-
ity of the pattern Rashomon ratio grows exponentially with
the number of samples, and could be an “expensive” metric
for predictive multiplicity when applied on a large dataset.

Ambiguity and discrepancy. Marx et al. (2020) proposed
ambiguity and discrepancy to measure multiplicity in terms
of the thresholded outputs (i.e., predicted classes) of a clas-
sifier in terms of classification accuracy. In probabilistic
classification, thresholding may mask similar predictions
produced by competing models and artificially increase mul-
tiplicity: output scores can be almost equal across differ-
ent classes, yet the (thresholded) predicted classes can be
very different. For example, two scores [0.49, 0.51] and
[0.51, 0.49] for a binary classification problem can lead to
entirely different predicted classes—1 and 0, respectively—
and ultimately overestimate predictive multiplicity. This
subtle, yet important difference motivates us to reconsider
existing metrics and introduce a new predictive multiplicity
metric for probabilistic classifiers that output scores.

3. Measuring Predictive Multiplicity of
Probabilistic Classifiers

We outline desirable properties of predictive multiplicity
metrics for probabilistic classifiers which provide guide-
lines for the creation of new multiplicity metrics in future
research. Next, we formally define Rashomon Capacity in
terms of the KL-divergence between the output scores of
classifiers in the Rashomon set.

Properties. Consider a Rashomon set R(H, ϵ) for a clas-
sification problem with c classes. We collect all possible out-
put scores for a sample xi ∈ D and define the ϵ-multiplicity
set as Mϵ(xi) ≜ {h(xi) | h ∈ R(H, ϵ)} ⊆ ∆c. Let m(·)
be a measure of predictive multiplicity, and m(Mϵ(xi)) be
the predictive multiplicity of sample xi. Ideally, we expect
m(Mϵ(xi)) to be a bounded value in [1, c], since at least
one class is assigned to sample xi, and at most c different
classes could be assigned to xi. If m(Mϵ(xi)) = 1, only
one score is produced for xi and all predictions in Mϵ(xi)
are exactly the same. Similarly, if m(Mϵ(xi)) = c, then
there must exist c models {h1, · · · , hc} ⊆ R(H, ϵ) such
that hj(xi) = ej . Finally, m(Mϵ(xi)) should be mono-
tonic. We summarize the desirable properties of predictive
multiplicity metrics in the following definition.

Definition 1. Let Sc ≜ {{y} | y ∈ ∆c} be the set of sin-
gleton sets in ∆c, and σ (Sc) its corresponding σ-algebra.
We say that a function m : σ(Sc) → R is a predictive multi-
plicity metric if for any A,B ∈ σ(Sc), (i) 1 ≤ m(A) ≤ c;
(ii) m(A) = 1 if and only if |A| ≤ 1; (iii) m(A) = c if and
only if ek ∈ A for k ∈ [c], i.e., A contains the corner points
of ∆c; (iv) m(A) ≤ m(B) if A ⊆ B.
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We introduce next a predictive multiplicity metric called
Rashomon Capacity that satisfies all properties above.

Rashomon Capacity. Our goal is to quantify predictive
multiplicity by the score difference assigned to each point xi

in D. It is natural to adopt divergence measures for distribu-
tions to capture the “variation” of scores in Mϵ(xi). From
a geometric viewpoint, a larger spread in scores indicates a
greater amount of predictive multiplicity for a sample.

Assume a probability (or “weight”) distribution PM across
models in R(H, ϵ) (and therefore each score in Mϵ(xi)),
where M denotes the random variable of selecting/sampling
the models in the Rashomon set. Intuitively, if PM assigns
mass 1 to a single model and 0 to all other models in the
Rashomon set, then the output of only one model is consid-
ered. Conversely, if PM is the uniform distribution, then
the outputs of every model in the set are equally weighed.
Given a divergence measure between distributions d(·∥·),
we quantify the spread of the scores in Mϵ(xi) by

ρ(Mϵ(xi), PM ) ≜ inf
q∈∆c

Eh∼PM
d(h(xi)∥q). (1)

Here, the minimizing q acts as a “center of gravity” or “cen-
troid” for the outputs of the classifiers in the Rashomon set
for a chosen distribution PM across models. Analogously,
the quantity ρ(Mϵ(xi), PM ) can be understood as a mea-
sure of “spread” or “inertia” across model outputs. We
select the distribution PM that results in the largest spread
in scores:

Cd(Mϵ(xi)) ≜ sup
PM

ρ(Mϵ(xi), PM ). (2)

A natural candidate for d(·∥·) is KL-divergence, and we
name the spread in scores measured as Rashomon Capacity.
Definition 2. Given a sample xi and the ϵ-multiplicity set
Mϵ(xi), the Rashomon Capacity is defined as

C(Mϵ(xi)) ≜ sup
PM

inf
q∈∆c

Eh∼PM
DKL(h(xi)∥q). (3)

Moreover, we define mC(xi) ≜ 2C(Mϵ(xi)).

The quantity C(Mϵ(xi)) is ubiquitous in information the-
ory; in fact, C(Mϵ(xi)) is the channel capacity (Cover,
1999) of a channel PY |M whose rows are the entries of
Mϵ(xi). This connection motivates the name “Rashomon
Capacity” and is useful for proving that mC(xi) is indeed a
predictive multiplicity metric, stated in the next proposition.
Proposition 1. The function mC(·) = 2C(Mϵ(·)) : X →
[1, c] satisfies all properties of a predictive multiplicity met-
ric in Definition 1.

Computation. The definition of Rashomon Capacity does
not assume a finite cardinality of the Rashomon set. Remark-
ably, even when the Rashomon set has infinite cardinality,

the value of Rashomon Capacity for a sample can be recov-
ered by considering only a small number of models in the
Rashomon set. In fact, for each sample xi, there exists a
subset of at most c models that fully captures the variation in
scores. This statement is formalized by the next proposition,
which can be proven by applying Carathéodory’s theorem
(Carathéodory, 1911).

Proposition 2. For each sample xi ∈ D, there exists a
subset A ⊆ Mϵ(xi) with |A| ≤ c that fully captures
the spread in scores for xi across the Rashomon set, i.e.,
mC(xi) = 2C(A). In particular, there are at most c models
in R(H, ϵ) whose output scores yield the same Rashomon
Capacity for xi as the entire Rashomon set.

With the discrete A, Rashomon Capacity can be computed
by the Blahut–Arimoto (BA) algorithm (Blahut, 1972; Ari-
moto, 1972). In terms of Rashomon Capacity, the (at most) c
conflicting scores capture the predictive multiplicity across
the entire Rashomon set. The stakeholder can then choose
to randomize between scores, accept the average score, or
apply another appropriate strategy.

4. Empirical Study
We illustrate how to measure, report, and resolve predictive
multiplicity of probabilistic classifiers using Rashomon Ca-
pacity on UCI Adult (Lichman, 2013), COMPAS (Angwin
et al., 2016), HSLS (Ingels et al., 2011), and CIFAR-10
datasets (Krizhevsky et al., 2009). The HSLS is an edu-
cation dataset, collected from high school students in the
USA, whose features include student and parent informa-
tion, and the binary label Y is students’ 9th-grade math test
scores. We include the CIFAR-10 dataset to demonstrate
how to report Rashomon Capacity in multi-class classifica-
tion. We adopt feed-forward neural networks for the first
three datasets, and a convolutional neural network VGG16
(Simonyan & Zisserman, 2014) for CIFAR-10. All numbers
reported are evaluated on the test set.

Measuring and reporting Rashomon Capacity. We de-
scribe one simple method for navigating the Rashomon set
next and, later in the section, we also consider sampling
models in the Rashomon set via random initialization of pa-
rameters prior to training (see Section 2 for alternative strate-
gies). Assume the models in H are parameterized. Given a
sample xi, we obtain models with output predictions pk by
approximately solving the following optimization problem
which maximizes the output score forall class k = [c]:

pk = hθ̂(xi), where θ̂ = argmax
θ∈Θ, hθ∈R(H,ϵ)

[hθ(xi)]k. (4)

To solve (4), for each k, we set the objective to be
minθ∈Θ −[hθ(xi)]k, compute the gradients, and update the
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(a) UCI Adult (80.28%) (b) COMPAS (66.22%) (c) HSLS (70.39%) (d) CIFAR-10 (81.67%)

Figure 1. For each dataset (percentage is test accuracy), the top figure shows the mean and standard error of the largest 1% and 5% (1%
tail and 5% tail in the legend) Rashomon Capacity among all the samples with difference Rashomon parameter ϵ. Two methods are used
to obtain models from the Rashomon set, AWP (4) and random sampling. The bottom figure shows the cumulative distribution of the
Rashomon Capacity of all the samples obtained by AWP. Each point is generated with 5 repeated splits of the dataset.

parameter θ until hθ /∈ R(H, ϵ), i.e., L̂(hθ) > ϵ. Given a
pre-trained model in the Rashomon set, (4) can be viewed
as an adversarial weight perturbations (AWP) technique to
explore the Rashomon set (Wu et al., 2020; Tsai et al., 2021).
With the discrete set of scores collected by solving (4), the
Rashomon Capacity can be computed by the BA algorithm.

We preform two methods, random sampling with differ-
ent weight initialization seeds and AWP (4), to obtain 100
models from the Rashomon set, and report the Rashomon
Capacity in Fig. 1. In particular, we show the mean of
the largest 1% and 5% Rashomon Capacity, and the cu-
mulative distribution of the Rashomon Capacity across
the samples. As the Rashomon parameter increases, both
sampling and AWP lead to higher Rashomon Capacity
since the Rashomon set gets larger. The AWP (4) achieves
higher Rashomon Capacity than random sampling as
AWP intentionally explores the Rashomon set that maxi-
mizes the scores variations. It is important to keep in per-
spective that each sample in the high-Rashomon Capac-
ity tail displayed in Fig. 1. corresponds to an individual
who receive conflicting predictions. In applications such as
criminal justice and education, conflicting predictions for
even one individual should be reported in, e.g., model cards
(Mitchell et al., 2019).

Resolving predictive multiplicity. We propose a greedy
model selection procedure to reduce the number of compet-
ing classifiers for resolving predictive multiplicity. Given R
competing classifiers, the goal is to select r models (r < R)
that result in distributions of the Rashomon Capacity similar
to that of the original R models. Starting from a dataset
D and a Rashomon set R(H, ϵ), this can be implemented

Figure 2. The distributions of the Rashomon Capacity for COM-
PAS datasets with mean test accuracy 67.35%, obtained by sam-
pling models from the Rashomon set and applying greedy model
selection procedure (Greedy in the legend) on the sampled models.

by (i) initializing a set A of models by randomly selecting
a model in R(H, ϵ), (ii) growing A by adding one model
from R(H, ϵ) that maximizes the average Rashomon Ca-
pacity across D, and (iii) stopping until there are r models
in A. This greedy model selection is inspired by Property 4
(monotonicity) in Definition 1, since including the models
to the set A does not reduce capacity.

In Fig. 2, we sampled 163 and 52 models from the
Rashomon sets for COMPAS and HSLS datasets respec-
tively. Here, the hypothesis space are feed-forward neural
networks. Observe that only a small subset of the sampled
models, selected by the greedy model selection procedure,
is required to recover the distribution of the Rashomon Ca-
pacity. On COMPAS dataset, the 10 models obtained by the
greedy model selection procedure capture the Rashomon
Capacity computed with the original 163 models., i.e., these
10 models “explain” most of the score variations.
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