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Abstract
Biases in existing datasets used to train algorith-
mic decision rules can raise ethical and economic
concerns due to the resulting disparate treatment
of different groups. We propose an algorithm for
sequentially debiasing such datasets through adap-
tive and bounded exploration in a classification
problem with costly and censored feedback. Our
proposed algorithm includes parameters that can
be used to balance between the ultimate goal of
removing data biases – which will in turn lead
to more accurate and fair decisions, and the ex-
ploration risks incurred to achieve this goal. We
analytically show that such exploration can help
debias data in certain distributions. We further
investigate how fairness criteria can work in con-
junction with our data debiasing algorithm. We
illustrate the performance of our algorithm using
experiments on synthetic and real-world datasets.

1. Introduction
Data-driven algorithmic decision making is being adopted
widely to aid humans’ decisions, in applications ranging
from loan approvals to determining recidivism in courts.
However, the datasets used for training these algorithms
might not accurately represent the agents they make deci-
sions on, due to, e.g., historical biases in decision making
and feature selection, or changes in the populations’ charac-
teristics or participation since the data was initially collected.
This in turn can result in disparate treatment of underrep-
resented or disadvantaged groups. Motivated by this, we
propose an algorithm which, while attempting to make ac-
curate (and fair) decisions, also aims to recover unbiased
estimates of the characteristics of agents interacting with it.

In particular, we study a classification problems with cen-
sored and costly feedback. Censored feedback means that
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the decision maker only observes the true qualification state
of those individuals it admits (e.g., a bank will only observe
whether an individual defaults on or repays a loan if the
loan is extended in the first place). In such settings, any
mismatch between the available training data and the true
population may grow over time due to adaptive sampling
bias: once a decision rule is adopted based on the current
training data, the algorithm’s decisions will impact new data
collected in the future, in that only agents passing the re-
quirements set by the current decision rule will be admitted
going forward. In response, the decision maker may attempt
to collect more data from the population; however, such data
collection is costly (e.g., may require extending loans to un-
qualified individuals). Given these challenges, we present
an active debiasing algorithm with bounded exploration:
our algorithm admits some agents that would otherwise be
rejected (i.e., it explores), yet adaptively and judiciously
limits the extent and frequency of this exploration.

In particular, in each time period, our algorithm selects a
(fairness-constrained) decision rule that minimizes classi-
fication error based on its current, possibly biased training
data; adopting this decision rule corresponds to exploitation
of the current information by the algorithm. At the same
time, to circumvent the censored feedback nature of the
problem, our algorithm also deviates from the prescriptions
of this loss-minimizing classifier to a judiciously chosen
extent (the extent is chosen adaptively, based on the current
estimates); this will constitute exploration. Our algorithm
includes two parameters to limit the costs of this exploration:
one modulates the frequency of exploration (an exploration
probability ϵt which can be adjusted using current bias es-
timates), and another limits the depth of exploration (by
setting a threshold LBt on how far from the classifier one is
willing to go when exploring).

Summary of findings and contributions.

1. Comparison with baselines. We contrast our proposed al-
gorithm against two baselines: exploitation-only
(one that does not include any form of exploration),
and pure exploration (which may randomly accept
some of the agents rejected by the classifier, but does
not bound exploration). We show (Theorem 4.1) that
exploitation-only always overestimates of the un-
derlying distributions. Also, while pure exploration
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can debias the estimates in the long-run (Theorem 4.2), it
does so at the expense of accepting any agent.

2. Analytical support for our proposed algorithm. We show
(Theorem 4.3) that our proposed active debiasing
algorithm with bounded exploration can correct biases in
unimodel distribution estimates. We also provide an error
bound for our algorithm (Theorem 4.4).

3. Interplay with fairness criteria. We analyze the impact
of fairness constraints on our algorithm’s performance, and
show (Proposition 4.5) that existing fairness criteria may
speed up debiasing of the data in one group, while slowing
it down for another.

4. Numerical experiments. We provide numerical support
for the performance of our algorithm using experiments on
synthetic and real-world (Adult and FICO) datasets.

Related work. Our paper is closely related to the works of
(Bechavod et al., 2019; Kilbertus et al., 2020; Ensign et al.,
2018; Blum & Stangl, 2020; Jiang & Nachum, 2020), which
study the impact of data biases on (fair) algorithmic decision
making. Among these works, Bechavod et al. (2019) and
Kilbertus et al. (2020) study fairness-constrained learning
in the presence of censored feedback. While these works
also use exploration, the form and purpose of exploration is
different: the algorithm in (Bechavod et al., 2019) starts with
a pure exploration phase, and subsequently explores with
the goal of ensuring the fairness constraint is not violated;
the stochastic (or exploring) policies in (Kilbertus et al.,
2020) conduct (pure) exploration to address the censored
feedback issue. In contrast, we start with a biased dataset,
and conduct bounded exploration to debias data; fairness
constraints may or may not be enforced separately and are
orthogonal to our debiasing process.

Our work is also closely related to (Deshpande et al., 2018;
Nie et al., 2018; Neel & Roth, 2018; Wei, 2021), which
study adaptive sampling biases induced by a decision rule,
particularly when feedback is censored. Among these, the
recent work of Wei (2021) is most closely related to ours,
and studies data collection by formulating the problem as
a partially observable Markov decision processes. Using
dynamic programming methods, the data collection policy
is shown to be a threshold policy that becomes more strin-
gent (in our terminology, reduces exploration) as learning
progresses. Our works differ in the problem setup and our
analysis of the impact of fairness constraints. More impor-
tantly, in contrast to all these works, our starting point is
a biased dataset (which may be biased for reasons other
than adaptive sampling in its collection, including histori-
cal biases); we then show how, while attempting to debias
this dataset by collecting new data, any additional adaptive
sampling bias during data collection can be prevented.

Our work is also broadly related to Bandit learning; addi-

tional and detailed discussions are given in Appendix A.

2. Model and Preliminaries
The environment. We consider a firm or decision maker,
who selects an algorithm to make decisions on a population
of agents. The firm observes agents arriving over times
t = 1, 2, . . ., makes a decision for agents arriving at time t
based on the current algorithm, and subsequently adjusts its
algorithm for times t+ 1 based on the observed outcomes.

Each agent has an observable feature or score x ∈ X ⊆ R
representing their characteristics (e.g., credit scores or exam
scores). We use a one-dimensional feature setting in our
analysis, and generalize to X ⊆ Rn in Section 5. They
are either qualified or unqualified to receive a favorable
decision captured by their true label y ∈ {0, 1}. In addi-
tion, each agent belongs to a group based on its protected
attributes (e.g., race, gender) denoted as g ∈ {a, b}. We
consider threshold-based, group-specific, binary classifiers
hθg,t(x) = 1(x ≥ θg,t) as (part of) the algorithm adopted
by the firm, where θg,t denotes the classifier’s decision
threshold. An agent from group g with feature x arriving at
time t is admitted iff x ≥ θg,t.
Quantifying bias. Let fy

g (x) = P(X = x|Y = y,G = g)
denote the true underlying pdf for the feature distribution
of agents from group g with label y. The algorithm has
an estimate of these unknown distributions, at each time t,
based on the data collected so far (or an initial training set).
Denote the algorithm’s estimate at t by f̂y

g,t(x).
Assumption 2.1. The firm updates its estimates f̂y

g,t(x) by
updating a single parameter ω̂y

g,t.
Under Assumption 2.1, the bias can be captured by the
mistmatch between the estimated and true parameters ω̂y

g,t

and ωy
g . In particular, we set the mean absolute error

E[|ω̂y
g,t − ωy

g |] as the measure for quantifying bias.

Algorithm choice without debiasing. Let αy
g be the frac-

tion of group g agents with label y. A loss-minimizing fair
algorithm selects its thresholds θg,t at time t as follows:

min
θa,t,θb,t

∑
g∈{a,b}

α1
g

∫ θg,t

−∞
f̂1
g,tdx+ α0

g

∫ ∞

θg,t

f̂0
g,tdx

s.t. C(θa,t, θb,t) = 0 . (1)

Here, the objective is the misclassification error, and
C(θa, θb) = 0 is the fairness constraint imposed by the
firm, if any. For instance, C(θa,t, θb,t) = θa,t − θb,t for
same decision rule, or C(θa,t, θb,t) =

∫∞
θa,t

f̂1
a,t(x)dx −∫∞

θb,t
f̂1
b,t(x)dx for equality of opportunity.

3. An Active Debiasing Algorithm with
Bounded Exploration

In this section, we present the active debiasing al-
gorithm which uses both exploitation (the decision rules
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of (1)) and exploration (some deviations) to remove any
biases from the estimates f̂y

g,t. Although the deviations may
lead to admission of some unqualified agents, they can be
beneficial to the firm in the long-run: by reducing biases
in f̂y

g,t, both classification loss estimates and fairness con-
straint evaluations can be improved. In this section, we drop
the subscripts g from the notation; when there are multiple
groups, our algorithm is applied to each group separately.

As noted in Section 1, our algorithm is one of bounded ex-
ploration: it includes a lowerbound LBt, which captures the
extent to which the decision maker is willing to deviate from
the current classifier θt, based on its current estimate f̂0

t of
the unqualified agents’ underlying distribution. Formally,

Definition 3.1. At time t, the firm selects a LBt such that

LBt = (F̂ 0
t )

−1(2F̂ 0
t (ω̂

0
t )− F̂ 0

t (θt))

where θt is the (current) threshold determined from (1),
F̂ 0
t , (F̂ 0

t )
−1 are the cdf and inverse cdf of the estimates f̂0

t ,
respectively, and ω̂0

t is (wlog) the α-th percentile of f̂0
t .

Notice that by selecting a high α-th percentile in the above
definition, LBt can be increased so as to limit the depth of
exploration. As shown later, this thresholding choice will
enable debiasing while controlling its costs.
Algorithm 1 (The active debiasing algorithm). Let
the decision threshold be θt, and LBt be given by Defini-
tion 3.1. Let {ϵt} be a sequence of exploration probabilities.
For agents (x†, y†) arriving at time t:

Step I: Admit agents and collect data. Admit all agents
with x† ≥ θt. Additionally, if LBt ≤ x† < θt, admit the
agent with probability ϵt.

Step II: Update the distribution estimates based on new
data collected in Step I. Identify new data with LBt ≤ x†

and y† = 1 (resp. y† = 0). Use all such x† with LBt ≤
x† < θt, and such x† with θt ≤ x† with probability ϵt, to
update ω̂1

t (resp. ω̂0
t ).

4. Theoretical Analysis
We consider two baselines: exploitation-only and
pure exploration, and highlight the benefits of
bounded exploration through our active debiasing
algorithm. All proofs are given in Appendix B.

4.1. The exploitation-only baseline

Our first baseline algorithm only updates its estimates of
the underlying distributions based on agents with x ≥ θt
who pass the (current) loss-minimizing classifier (1). The
following result shows that this approach consistently suf-
fers from adaptive sampling bias, ultimately resulting in
overestimation of the underlying distributions.

Theorem 4.1. An exploitation-only algorithm over-
estimates ωy , i.e., limt→∞ E[ω̂y

t ] > ωy,∀y.

4.2. The pure exploration baseline

In this second baseline, at each time t, the algorithm may
accept any agent with x < θt with probability ϵt. The
following result establishes that using the data collected this
way, the distributions can be debiased in the long-run, if
the data collected above the classifier is also sampled with
probability ϵt when updating the distributions.
Theorem 4.2. Using the pure exploration algorithm,
ω̂y
t → ωy as t → ∞, ∀y.

4.3. The active debiasing algorithm

While pure exploration can successfully debias data
in the long-run, it does so at the expense of accepting agents
with any x < θt. The following result shows that our
algorithm can still debias data in certain distributions, while
limiting the depth of exploration to LBt < x < θt.
Theorem 4.3. Let fy and f̂y

t denote the true feature distri-
bution and their estimates at the beginning of time t, with
respective α-th percentiles ωy and ω̂y

t . Assume these are
unimodel distributions, ϵt > 0,∀t, and ω̂0

t ≤ θt ≤ ω̂1
t ,∀t.

Then, using the active debiasing algorithm,
(a) If ω̂y

t is underestimated (resp. overestimated), then
E[ω̂y

t+1] ≥ ω̂y
t , (resp. E[ω̂y

t+1] ≤ ω̂y
t ) ∀t,∀y.

(b) The sequence {ω̂y
t } converges to ωy as t → ∞, ∀y.

4.4. Error bound analysis

Our error bound analysis compares the errors (measured as
the number of wrong decisions made) of our adaptive
debiasing algorithm with the errors made by an oracle
which knows the true underlying distributions. The follow-
ing theorem provides an upperbound on the errors incurred
by active debiasing.
Theorem 4.4. Let f̂y

g,t(x) be the estimated feature distribu-
tions at round t ∈ {1, . . . ,m}, and θg,t be a v-approximate
solution. Denote the Rademacher complexity of the classi-
fier family H with n training samples by Rn(H). At round
t, among the two groups, let Nt be the larger net explo-
ration errors made, n′

t be the smaller sample size collected,
Rn′′

t
(H) be the larger Rademacher complexity. Then, with

probability at least 1− 4δ with δ > 0, the active debiasing
algorithm has an error bound (Err.):

Err. ≤ 8mRn′′
1
(H)+ 8m√

n′
1

+2m
√

2 ln(2/δ)
n′
1

+2mN1+4mv

4.5. Active debiasing and fairness criteria
We consider our proposed algorithm when used in con-
junction with fairness constraints (e.g., equality of opportu-
nity, same decision rule). Imposing such fairness rules will
lead to changes to the selected classifiers compared to the
fairness-unconstrained case. Let θFg,t and θUg,t be the fairness
constrained and unconstrained decision rules obtained from
(1). We say group g is being over-selected (resp. under-
selected) if θFg,t < θUg,t (resp. θFg,t > θUg,t). The following
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result shows how such over/under-selections can differently
affect the debiasing of estimates on different agents.

Proposition 4.5. Let fy
g and f̂y

g,t be the true and esti-
mated feature distributions, with respective medians ωy and
ω̂y
t . Assume these are unimodel distributions, and active

debiasing is applied. If group g is over-selected (resp.
under-selected) under a fairness constraint, i.e., θFg,t < θUg,t
(resp. θFg,t > θUg,t), the speed of debiasing on the estimates
f̂y
g,t will decrease (resp. increase).

5. Numerical Experiments
In this section, we illustrate the performance of our algo-
rithm through numerical experiments on both Gaussian and
Beta distributed synthetic datasets, and on two real-world
datasets: the Adult dataset (Dua & Graff, 2017) and the
FICO credit score dataset (Reserve, 2007) pre-processed
by (Hardt et al., 2016). More figures are in Appendix C.
Performance on Beta distributions: Fig. 1(a) shows that
our algorithm can debias data for Beta distributions with
a mistmach between the α parameter. This verifies that
Theorem 4.3 can hold beyond symmetric distributions.

Figure 1. Debiasing on Beta and comparison with baselines.

Comparison with baselines: Our first Gaussian exper-
iments in Fig. 1(b), compare our algorithm against two
baselines. It shows that consistent with Theorem 4.1,
exploitation-only overestimates the distributions
due to adaptive sampling biases. We also observe that
as expected, pure exploration debiases faster than
active debiasing, but as shown next, incurs higher
exploration costs while doing so.
Regret and Weighted Regret: Figs. 2 compare the re-
gret and weighted regret of the algorithms. Regret is
measured as the difference between the number of wrong
decisions made by our algorithm vs the oracle classifier.
Weighted regret is defined similarly, but also adds an ex-
ponential weight to each wrong decision. We observe
that exploitation-only’s regret is super-linear, as not
only it fails to debias, but has increasing error due to biases
from overestimating. On the other hand, while algorithms
that explore “deeper” have lower regret in Fig. 2(a), they
have higher weighted regret shown in Fig. 2(b).
Interplay of debiasing and fairness constraints: Fig. 3
compare the performance when there are two groups of
agents with underlying Gaussian distributions, and the algo-
rithm is chosen subject to three different fairness settings:
no fairness, equality of opportunity (EO), and the same de-

Figure 2. Regret and weighted regret.

cision rule (SD). The findings are consistent with Prop. 4.5.
For instance, SD will over-select the advantaged group so
that, as shown in the left panel in Fig. 3, the speed of de-
biasing on the estimates f̂y

a,t will decrease. In contrast, an
opposite effect will happen in the disadvantaged group b.

Figure 3. Debiasing used with fairness constraints.

Active debiasing on the Adult and FICO dataset:
Fig. 4 (a-c) and (d) illustrate the performance on the Adult
and FICO dataset. We observe that our proposed algorithm

(a) Debiasing Ga, Adult. (b) Debiasing Gb, Adult.

(c) Gb with additional data. (d) Debiasing on FICO.
Figure 4. Active debiasing on the Adult and FICO datasets.

can debias estimates across groups and for both labels, but
that this happens in the long-run with sufficient samples: in
Adult, as there are only 1080 samples for label 1 agents from
Gb, although the bias initially decreases, the final estimate
still differs from the true value. Fig. 4(c) verifies that this
estimate would have been debiased in the long-run with
additional samples from the underlying population.
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A. Additional and Detailed Related Work
Data debiasing with censored and costly feedback: Our paper is most closely related to the works of (Ensign et al., 2018;
Bechavod et al., 2019; Kilbertus et al., 2020; Blum & Stangl, 2020; Jiang & Nachum, 2020), who have investigated the
impacts of data biases on (fair) algorithmic decision making. Ensign et al. (2018)’s work was one of the earliest to identify
the feedback loops between predictive algorithms and biases in the collected data; we investigate similar feedback loops,
but are primarily focused on debiasing data, as well as the impact of fairness-constrained learning. Bechavod et al. (2019)
and Kilbertus et al. (2020) study fairness-constrained learning in the presence of censored feedback. While these works
also use exploration, the form and purpose of exploration is different: the algorithm in (Bechavod et al., 2019) starts with
a pure exploration phase, and subsequently explores with the goal of ensuring the fairness constraint is not violated; the
stochastic (or exploring) policies in (Kilbertus et al., 2020) conduct (pure) exploration to address the censored feedback
issue. In contrast, we start with a biased dataset, and conduct bounded exploration with the goal of data debiasing while
accounting for the costs of exploration; fairness constraints may or may not be enforced separately and are orthogonal to our
debiasing process. As shown in Section 5, such pure exploration processes incur higher exploration costs than our proposed
bounded exploration algorithm.

A number of other works, including (Deshpande et al., 2018; Nie et al., 2018; Neel & Roth, 2018; Wei, 2021) have, similar
to our work, explored the question of biases induced by a decision rule on data collection, particularly when feedback
is censored. Deshpande et al. (2018) study inference in a linear model with adaptively collected data; in contrast to our
proposed method, their work focuses on debiasing of an estimator, rather than modifying the decision rule used to collect the
data. Nie et al. (2018) study the problem of estimating statistical parameters from adaptively collected data. Their proposed
adaptive data collection method, which also similar to ours (Assumption 2.1) is used for single-parameter estimation, is
one of online debiasing; our proposed data collection methods however differ. In particular, our focus is on accounting for
multiple subgroups as well as fairness considerations. More importantly, we propose a bounded exploration strategy, which
accounts for the risks of exploration decisions and limits the depth of exploration; this method of exploration is different
from the random exploration used to collect the data in (Nie et al., 2018), to which their proposed debiasing algorithms
based on data splitting and modified maximum likelihood estimators are applied.

While (Deshpande et al., 2018; Nie et al., 2018) propose ex-post methods for debiasing adaptively collected data, Neel
& Roth (2018) consider an adaptive data gathering procedure, and show that no debiasing will be necessary if the data
is collected through a differentially private method. We similarly propose a debiasing algorithm that adaptively adjusts
its data collection procedure, but unlike (Neel & Roth, 2018), account for the costs of exploration in our data collection
procedure. The recent work of Wei (2021) studies data collection in the presence of censored feedback, and similar to our
work, accounts for the cost of exploration in data collection, by formulating the problem as a partially observable Markov
decision processes. Using dynamic programming methods, the data collection policy is shown to be a threshold policy that
becomes more stringent (in our terminology, reduces exploration) as learning progresses. Our works are similar in that
we both propose using adaptive and cost-sensitive exploration, but we differ in the problem setup and our analysis of the
impact of fairness constraints. More importantly, in contrast to both (Neel & Roth, 2018; Wei, 2021), our starting point is a
biased dataset (which may be biased for reasons other than adaptive sampling in its collection); we then consider how, while
attempting to debias this dataset by collecting new data, any additional adaptive sampling bias during data collection should
be prevented.

Interplay of fairness criteria and data biases: Our analysis in Section 4.5, similar to those of Blum & Stangl (2020) and
Jiang & Nachum (2020), also considers the interplay between algorithmic fairness rules and data biases. Blum & Stangl
(2020) show that certain fairness constraints can themselves be interpreted as enabling debaising of the underlying estimates.
Also, both works study data bias arising due to the labeling process and propose reweighting techniques to address it. Our
work differs from these from two main aspects. First, we model biases as changes in feature-label distributions, in contrast
to the assumption of noisy labels in these works. Second, we introduce a statistical debiasing technique based primarily on
exploration, which is orthogonal to the social debiasing achieved through fairness constraints. Our proposed model and
algorithm therefore complement these works.

Relation to the bandit learning literature: More broadly, our work is related to the literature on Bandit learning and its
study of exploration and exploitation trade-offs, where adaptively adjusted exploration decisions play a key role in allowing
the decision maker to attain new information, while at the same time using the collected information to maximize some
notion of long-term reward. In particular, bandit exploration deviates from choosing the current best arm in several ways:
randomly as in ϵ-greedy, by some form of highest uncertainty as in UCB, by importance sampling approaches as in EXP3,
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etc. A key difference of our work with these existing approaches is our choice of bounded exploration, where the bounds
are motivated by settings in which the cost of wrong decisions increase as samples further away from the current decision
threshold are admitted. In that sense, our proposed approach can be viewed as a bounded version of ϵ-greedy; we refer to
the non-bounded version of ϵ-greedy in our setting as pure exploration, and show that our proposed algorithm can
achieve lower weighted regret (one that accounts for the cost of wrong decisions) than pure exploration.

Long-term fairness and bias in algorithmic decision making: The majority of works on fair algorithmic decision making
have focused on achieving fairness in a one-shot setting (i.e. without regards to the long-term effects of the proposed
algorithms); see e.g. (Hardt et al., 2016; Dwork et al., 2012; Corbett-Davies et al., 2017). Some recent works have studied
long-term impacts of fairness on disparities, group representation, and strategic manipulation of features, as a result of
adopting fairness measures (Liu et al., 2018; Zhang et al., 2019; Liu et al., 2020). Our work contributes to this line of
research, by analyzing the long-term effects of imposing fairness constraints on data collection and debiasing efforts.

Relation to the active learning literature: Our work is also related to the active learning literature. Balcan et al. (2007)
study the sample complexity of labeled data required for active learning, and Kazerouni et al. (2020) propose an algorithm
involving exploration and exploitation-based adaptive sampling, verifying it using simulations. Similar to these works, we
use exploration for addressing adaptive sampling bias; the main difference, aside from the application, is in our analytical
guarantees as well as our focus on the interplay of debiasing with fairness constraints.

Performative prediction: Finally, the recent line of work on performative prediction proposed by Perdomo et al. (2020)
also considers the effects of algorithmic decisions on the underlying population’s features-label distributions. In particular,
the choice of the ML model can cause a shift in the data distribution, and the goal of this work is to identify the stable ML
model parameter that is attained at a fixed point of the algorithm-population interactions. In contrast to this goal, our focus is
on pre-existing and unchanging distribution shifts in the data, which our active debiasing algorithm aims to correct
over time. Therefore, our algorithm could be considered as a debiasing method to be used when such performative shifts are
present in the data, but are unaccounted for: If distribution shifts happen relatively slower than our debiasing algorithm’s
convergence speed, our active debiasing could be used to recover correct estimates of the underlying distribution,
the estimates of which might have been biased due to performative distribution shifts.

B. Proof of Section 4
B.1. Proof of Theorem 4.1

Proof. We detail the proof for label 0 estimates ω̂0
t , and discuss two cases. First, if ω̂0

t is overestimated, i.e. ω̂0
t > ω0. Note

that we have θt ≥ ω̂0
t . Then, as only agents with x† ≥ θt are admitted, ω̂0

t may only be updated to stay the same or increase.
Therefore, ω̂0

t will remain overestimated.

Next consider the case that ω̂0
t is underestimated, ω̂0

t < ω0. From t on, consider the T ≫ t next steps. First, since each
observation is independently drawn, we know that at time t′ = t, ..., t + T , xt′ − E[X|X ≥ θt′ ] forms a martingale;
this is because of the independence of xt′ and θt′ when conditioned on the historical information, as well as the fact that
E[xt′ ] = E[X|X ≥ θt′ ].

By definition of ω0, we also know that
∑T

t′=t E[X|X ≥ θt′ ] > T · ω0. Denote the gap by ∆ :=
∑T

t′=t
E[X|X≥θt′ ]

T − ω0.
Therefore using the Azuma-Hoeffding inequality we have

P
( T∑

t′=t

xt′ −
T∑

t′=t

E[X|X ≥ θt′ ] ≤ δ
)
≤ e

−2δ2

T−t+1 ,

for any δ < 0. Letting δ = −∆ · (T − t+ 1), the above can be re-written as

P( 1
T−t+1

T∑
t′=t

xt′ > ω0) > 1− e(−2∆2(T−t+1)) → 1︸︷︷︸
T→∞

This proves that with high probability the mean of the new samples is higher than ω0. Therefore, at some time T that is
significantly higher than t, the new estimate ω̂0

T will be similar to 1
T−t+1

∑T
t′=t xt′ , which is higher than the true ω0. From

our arguments for the overestimated case, from this point on, ω̂0
t will stay overestiamted. The proof for ω̂1

t is similar.



Published as a workshop paper at ICML 2022

B.2. Proof of Theorem 4.2

The proof follows from assuming (wlog) that the unknown parameter ωy being estimated is the distribution’s mean. Then,
as we are collecting i.i.d. samples from across the distribution, ω̂y

t can be set to the sample mean, and the conclusion follows
from the strong law of large numbers. Note also that if all the data above the classifier was considered when making the
updates, following similar arguments to those in the proof of Theorem 4.1, the algorithm would obtain overestimates of the
distributions. Lastly, we could equivalently balance data by resampling the exploration data (rather than downsampling the
exploitation data), to debias data through this procedure.

B.3. Proof of Theorem 4.3

Proof. We detail the proof for debiasing f̂0
t (which happens using x† ≥ LBt and y† = 0); the proof for f̂1

t is similar.

Part (a). In time step t+1, with the arrival of a batch of Nt+1 samples in [LBt,∞), the current estimate ω̂0
t will be updated to

ω̂0
t+1 based on the proportion of ω̂0

t in the existing data. Denote the current left portion in (LBt, ω̂
0
t ) as p1 :=

F̂ 0(ω̂0
t )−F̂ 0(LBt)

F̂ 0(θt)−F̂ 0(LBt)
.

Based on Definition 3.1, we can also obtain the portion in (ω̂0
t , θt) denoted as p2 :=

F̂ 0(θt)−F̂ 0(ω̂0
t )

F̂ 0(θt)−F̂ 0(LBt)
= p1. Since their

denominators are the same, we can just compare their numerators. Denote µ0 and µ̂0
t as the mode of the true and estimated

label 0 distribution, where µ0 is unknown and µ̂0
t is the current estimates at time step t. When µ̂0

t < (resp. >)µ0, it is
underestimated (resp. overestimated), and w.l.o.g we can assume the ω̂0

t < (resp. >)ω0. For example, in Gaussian and
Beta distribution with α parameter unknown. Denote K = 2F 0(ω̂0

t )− F 0(LBt)− F 0(θt). Notice that the only unknown
variable in K is the unknown distribution parameter hidden in F 0, which can be written as a function of mode µ0. Hence,
we can write K as a function of µ0. For example, in Gaussian distribution, µ0 is the mean of the distribution; in Beta
distribution, the unknown parameter α can be written in terms of the mode µ0 given parameter β is known. Based on
Definition 3.1, K = 0 when µ0 = µ̂0

t , which represents the perfectly estimated case (ω̂0
t = ω0). In this case, p1 = p2,

which means once the parameter is correctly estimated, f̂0
t is not expected to shift from f0.

Now, we can find the sign of K when µ0 is above or below the µ̂0
t by taking the derivative of K w.r.t. µ0. Denote K ′ as

K ′ =
dK

dµ0
=

d

dµ0

[
2F 0(ω̂0

t )− F 0(LBt)− F 0(θt)

]
= −2f0

µ0(ω̂0
t ) + f0

µ0(LBt) + f0
µ0(θt)

The expression f0
µ0(ω̂0

t ) means the distribution pdf calculated at ω̂0
t with unknown variable µ0. The last equality holds

true because F 0(ω̂0
t ) becomes smaller when µ0 becomes larger while ω̂0

t holding as constant. For example, in Gaussian
distribution F 0(ω̂0

t ) in N(6, 1) is larger than that in N(7, 1) for any given ω̂0
t .

Notice that, ω̂0
t is the α-th percentile of the f̂0

t , which is a random but known constant. When µ0 = ω̂0
t , since we have

LBt ≤ ω̂t ≤ θt based on Definition 3.1, we can find K ′(ω̂0
t ) ≤ 0 since the density at mode µ0 is the largest. Hence, we can

relate the location of the ω̂0
t with µ0 together and conclude K ′ ≤ 0 for any µ0. Therefore, we consider the following two

cases:

Case 1 (Underestimated): ω̂0
t < ω0. Based on our assumption, we can also have µ̂0

t ≤ µ0. Since K = 0 when µ0 =
µ̂0
t , ω̂

0
t = ω0, and K ′ ≤ 0 for any µ0. Then, in this case, we have K ≤ 0 when µ̂0

t ≤ µ0, which means p1 ≤ p2. Therefore,
more samples are expected to be observed in range of (ω̂0

t , θt) so that the ω̂0
t is expected to shift up. Hence, we have

E[ω̂0
t+1] ≥ ω̂0

t .

Case 2 (Overestimated): ω0 < ω̂0
t . Through similar analysis as Case 1 (Underestimated), we can obtain E[ω̂0

t+1] ≤ ω̂0
t .

Part (b). We first show that the converging sequence converges to the true estimates.

By the construction of the bounds in Definition 3.1, the estimated parameter ω̂0
t is the α-th percentile of f̂0

t , the median in the
interval [LBt, θt] and some percentile in the interval [LBt,∞); we therefore first find their distribution accordingly. Assume
there are Nt = m+ n+ 1 points in the interval [LBt,∞) with m and n samples below and above ω̂0

t respectively. More
specifically, for these n samples, there are m samples between [ω̂0

t , θt] and n−m samples above θt. Based on the probability
distribution of order statistics in [LBt, θt], denote three possibilities X , Y , Z denoting the number of samples below, on, and
above the ω̂0

t , respectively, having probabilities p =
F 0(ω̂0

t )−F 0(LBt)
F 0(θt)−F 0(LBt)

, q =
f0(ω̂0

t )
F 0(θt)−F 0(LBt)

, and r =
F 0(θt)−F 0(ω̂0

t )
F 0(θt)−F 0(LBt)

. Since
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the distributions are continuous, the probability of multiple samples being exactly on ω̂0
t is zero. Therefore, the pdf of ω̂0

t

can be found based on the density function of the trinomial distribution:

P(ω̂0
t = ν)dν =

(2m+ 1)!

m!m!
( F 0(ν)−F 0(LBt)
F 0(θt)−F 0(LBt)

)m( F 0(θt)−F 0(ν)
F 0(θt)−F 0(LBt)

)m f0(ν)
F 0(θt)−F 0(LBt)

dν (2)

From the above, we can see that the density function of the ω̂0
t is a beta distribution with α = m+ 1, β = m+ 1, pushed

forward by H(ν) := F 0(ν)−F 0(LBt)
F 0(θt)−F 0(LBt)

; this is the CDF of the truncated F 0 distribution in [LBt, θt]. In other words, using G

to denote the Beta distribution’s CDF, ω̂0
t has CDF G(H(ν)), and by the chain rule, pdf g(H(ν))h(ν).

It is known (Maritz & Jarrett, 1978) that for samples located in the range of [LBt, θt], the sampling distribution of the
median becomes asymptotically normal with mean M and variance 1

4(2m+3)H(M) , where M is the median, the truncated
F 0 distribution in [LBt, θt]. If the sequence of {ω̂0

t } produced by our active debiasing algorithm converges, by
Definition 3.1, the thresholds LBt and θt will converge as well; As t → ∞, ϵt → 0, 2m + 1 → ∞ in this interval, the
variance becomes zero, and ω̂0

t+1 → M . By Definition 3.1, it must be that the median M of H is equal to ω0. Therefore,
ω̂0
t+1 → ω0.

Lastly, we show that the sequence of estimates {ω̂0
t } is a converging sequence. Consider the sequence of estimates {ω̂0

t },
and separate into the two disjoint subsequences {ŷ0t } denoting the parameters that are underestimated with respect to the
true ω0, and {ẑ0t } denoting those that are overestimated.

We now show that the sequence of underestimation errors, {∆y
t } := {ω0 − ŷ0t } and the sequence of overestimation errors,

{∆z
t } := {ẑ0t − ω0}, are supermartingales. We detail this for {∆y

t }. Consider two cases:

• First, assume the update ŷ0t+1 is the next immediate update after ŷ0t in the original sequence {ω̂0
t }; that is, an

underestimated ŷ0t has been updated to a parameter that continues to be an underestimate. In this case, by Part (a),
E[ŷ0t+1|ŷ0t ] ≥ ŷ0t , and therefore, E[∆y

t+1|∆
y
t ] ≤ ∆y

t .

• Alternatively assume ŷ0t+1 is not obtained immediately from ŷ0t ; that is, ŷ0t+1 has been obtained as a result of an
update from an overestimated parameter. We note that now, ŷ0t+1 ≥ ŷ0t . This is because either no new estimates
have been obtained between ŷ0t and the true parameter ω0 since the last time the parameter was underestimated, in
which case, it must be that ŷ0t+1 = ŷ0t . Otherwise, a new estimate in [ŷ0t , ω

0] has been obtained, in which case, again,
E[ŷ0t+1|ŷ0t ] ≥ ŷ0t . In either case, E[∆y

t+1|∆
y
t ] ≤ ∆y

t .

Therefore, by the Doobs Convergence theorem, the supermatingales {∆y
t } and {∆z

t } converge to random variables ∆y and
∆z . By the same argument as the beginning of the proof of this part, these are asymptotically normal with mean zero and
with variances decreasing in the number of observed samples in their respective intervals. Therefore, ∆y → 0 and ∆z → 0
as N → ∞, and therefore {ω̂0

t } converges to ω.

B.4. Proof of Theorem 4.4

Proof. This proof is based on a reduction from fair-classification to a sequence of cost-sensitive classification problems,
as proposed and also used to obtain error bounds in Agarwal et al. (2018) and Bechavod et al. (2019). We adapt these to
our bounded exploration setting. In order to find out our algorithm’s error bound, we will have four steps. The first step
is to rewrite each individual update as saddle point problem, which can be solved efficiently by exponentiated gradient
reduction method introduced in Agarwal et al. (2018). Second, based on the solution output from the reduction method, we
find the bound of classification error on the true distribution. Thirdly, we will introduce the exploration error made by our
debiasing algorithm. Lastly, we will aggregate m updates together to derive the final algorithm error bound. For a simpler
notation, only one group will be studied and subscript t = 1 will be assigned in the following step 1-3 since they focus on
the information in the first update, and the other group can be analyzed in the same way. We also assume throughout that a
fairness constraint |C(θa,t, θb,t)| ≤ γ has been imposed.

Step 1: Rewrite. We will treat our first update as a saddle point problem. Denote err(hθg,t=1) =∑b0a+b1a+b0b+b1b|1
i=1 E

(xi,yi,gi)∼D

[
ℓ(hθg,t=1

(xi, gi), yi)
]
. Since we do not know the true distribution over (X,Y,G), and

only have access to samples, we will use the empirical estimates ˆerr(hθg,1) and Ĉ(θa,1, θb,1). Due to the sampling error, we
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also allow errors in satisfying the constraints by setting γ̂ = γ + e. For the fairness constraint, we will introduce Lagrangian
multipliers λj ≥ 0. This allows us to define the Lagrangian of the problem:

L(hθg,1 , λj) = ˆerr(hθg,1) + λ1(Ĉ(θa,1, θb,1)− γ̂) + λ2(−Ĉ(θa,1, θb,1)− γ̂)

Following the proof procedures in Agarwal et al. (2018), we impose an additional constraint on the l1 norm of λj such that
||λλλ||1 ≤ B for a sufficient large constant B. By strong duality, we have:

OPT = min
θg,1∈R+

max
λj∈R+,||λλλ||1≤B

L(hθg,1 , λj) = max
λj∈R+,||λλλ||1≤B

min
θg,1∈R+

L(hθg,1 , λj)

where the optimal solution (h∗
θg,1

, λ∗
j ) is the saddle point of the L(hθg,1 , λj), and OPT denotes the optimal objective value.

Agarwal et al. (2018) proposed an exponentiated gradient algorithm to find an approximate solution corresponding to a
v-approximate saddle point (ĥθg,1 , λ̂j) of the Lagrangian such that:

L(ĥθg,1 , λ̂j) ≤ L(hθg,1 , λ̂j) + v for all θg,1 ∈ R+

L(ĥθg,1 , λ̂j) ≥ L(ĥθg,1 , λj)− v for all λj ∈ R+, ||λλλ||1 ≤ B

Hence, as shown in their Theorem 1, we can also find a v-approximate saddle point in at most O(1/v2) iterations. However,
a large value of B will increase the cost of needing more iterations to reach any given suboptimality. Hence, following from
Lemma B.3 of Bechavod et al. (2019), they show that it is sufficient to reduce it to be Λ = {||λλλ||1 ≤ 2|λλλ ∈ R2

+}. We also
adopt this assumption.

Step 2: Bound of error on the true distribution.

Lemma B.1 (Follows from Lemma B.4 of Bechavod et al. (2019)). Suppose (ĥθg,1 , λ̂j) is a v-approximate saddle point of
the Lagrangian. Then, the following inequality holds:

ˆerr(ĥθg,1) ≤ ˆerr(h∗
θg,1) + 2v

The algorithm error comes with three different sources. First, we use samples to estimate the true distribution. Second, we
introduce a bound B on the magnitude of λλλ. Lastly, we have the suboptimal solution that is returned by the exponentiated
gradient algorithm with suboptimiality level v. The first error is unavoidable, which is also called the statistical error. The
other two can be driven arbitrarily small at the cost of more iterations of exponentiated gradient algorithm. To bound the
statistical error, we use Rademacher complexity of the classifier family H denoted as Rn(H), where n is the number of
training samples. Denote n′

g,t be the number of training samples we collected in round t in group g. In the first update, we
have n′

g,1 = b0g + b1g|{t = 1}. We also assume that Rn(H) ≤ Cn−α for some C ≥ 0 and α ≤ 1/2. Hence, based on the
Theorem 4 in Agarwal et al. (2018), we can find that in the first update with probability at least 1− 4δ with δ > 0:

err(ĥθg,1) ≤ err(h∗
θg,1) + 2v + 4Rn′

g,1
(H) +

4√
n′
g,1

+

√
2 ln(2/δ)

n′
g,1

Step 3: Introduce exploration error. Let n0,g,t and n1,g,t denote the number of samples from un/qualified group that
fall below the threshold θt in round t respectively. Since in Step 2 we already considered the classification errors, we only
consider the additional exploration error introduced in order to remove biases. Because of exploration, some samples from
the qualified group rejected previously will be accepted, which will allow the algorithm to make less errors. And the same
situation also happens to the unqualified group, which will make more errors.

Denote ϵt as the exploration probability at round t. Hence, for the pure exploration model, we should add errors made for
unqualified group and minus correct decisions made for qualified group. Mathematically, it can be represented as:

(n0,g,t − n1,g,t)ϵt1
[
(xi|gi) ≤ θg,t

]
Comparing to our bounded exploration model, we introduce the LBt to limit the depth of exploration. In other words, the
number of samples fall into the exploration range will be proportional to n0,g,t and n1,g,t based on the location of LBt.
Mathematically, denote Ng,t as the net exploration error for group g at round t such that:

Ng,t =

(
F̂ 0(θt)− F̂ 0(LBt)

F̂ 0(θt)
ϵtn0,g,t −

F̂ 1(θt)− F̂ 1(LBt)

F̂ 1(θt)
ϵtn1,g,t

)
1

[
LBg,t ≤ (xi|gi) ≤ θg,t

]
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Note that, when the LBt → −∞, then the exploration error of our bounded exploration model is the same as pure exploration
baseline.

Step 4: Add m updates together. For the advantaged group a, by considering the exploration error and adding total m
updates, we have

m∑
t=1

err(ĥθa,t
) ≤

m∑
t=1

[
err(h∗

θa,t
) + 4Rn′

a,t
(H) +

4√
n′
a,t

+

√
2 ln(2/δ)

n′
a,t

+Na,t

]
+ 2mv

The same expression can also be obtained for the disadvantaged group b. Hence, let n′
t := min{n′

a,t, n
′
b,t}, Nt :=

max{Na,t, Nb,t},Rn′′
t
(H) := max{Rn′

a,t
(H),Rn′

b,t
(H)} and by adding these two expressions together, it yields the error

bound for our algorithm such that

Error Bound =

m∑
t=1

err(ĥθa,t) +

m∑
t=1

err(ĥθb,t)−
m∑
t=1

err(h∗
θa,t

)−
m∑
t=1

err(h∗
θb,t

)

≤
∑
g

m∑
t=1

[
4Rn′

g,t
(H) +

4√
n′
g,t

+

√
2 ln(2/δ)

n′
g,t

+Ng,t

]
+ 4mv

≤ 8mRn′′
1
(H) +

8m√
n′
1

+ 2m

√
2 ln(2/δ)

n′
1

+ 2mN1 + 4mv

The last equality holds since groups are independent from each other, and the first update comes with the largest error.

B.5. Proof of Theorem 4.5

Proof. We prove the proposition for the case where the introduction of fairness constraints leads to over-selection of group
g, i.e., θFg,t < θUg,t. The proofs for the under-selected case are similar. We note that the presence of two different groups only
affects the choice of the classifier given the fairness constraints, following which the proof becomes independent of the
group label; we therefore drop g in the remainder of the proof.

We detail the proof for the debiasing of f̂0
t , which depends on the choice of LBt in Definition 3.1, i.e.,

F̂ 0
t (LBt) = 2F̂ 0

t (ω̂
0
t )− F̂ 0

t (θt) .

Since θFt < θUt , this means that F̂ 0
t (θ

F
t ) < F̂ 0

t (θ
U
t ), and consequently that F̂ 0

t (LBF
t ) > F̂ 0

t (LBU
t ), and thus, that

LBF
t > LBU

t .

Now, consider the interval [LBt,max0], with max0 denoting the maximum of f0. For example, max0 can be ∞ if f0

follows a Gaussian distribution; and it can be finite if f0 follows a Beta distribution. Only arrivals of (x†, y†), with y† = 0,
who are admitted in this interval, will result in an update to the estimated median. Since LBF

t > LBU
t , this interval is

narrower under the fairness constrained classifier, meaning that it takes more time to meet the batch size requirement under
compared LBU

t compared to LBF
t . As detailed in the proof of Theorem 4.3 each of these updates will move the estimate

in the correct direction, and these estimates converge to the true value in the long-run as more samples become available.
Hence, debiasing of f̂0

t is slower after the introduction of fairness constraints.

Similar arguments hold for updating f̂1
t , which takes samples in [LBt,max1]. When LBt increases, it also takes more time

for label 1 distribution update. Hence, after the introduction of the constraint, the fairness unconstrained classifier observes a
wider range of samples points, including all those observed by the constrained classifier. Therefore, the addition of fairness
constraints decreases the speed of debiasing on f̂1

t as well.

C. Additional Figures and Experiments
C.1. Performance of active debiasing on Beta distributions

Fig. 5 shows that our algorithm can debias data for which the underlying feature-label distributions follow Beta distributions.
We have assumed a mistmach between the parameter α of the true and estimated distributions, and selected these so that the
estimated and true distributions have different relative skewness. This verifies that Theorem 4.3 can hold beyond symmetric
distributions.
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Figure 5. Debiasing under Beta distributions.

C.2. Comparison with the exploitation-only and pure exploration baselines

Fig. 6 compares our algorithm against two baselines. The underlying distributions are Gaussian and no fairness constraint is
imposed. Our algorithm sets α1 = 50 and α0 = 60 percentiles, and exploration frequencies ϵt are selected adaptively by
both our algorithm and pure exploration.

(a) Rate of debiasing, f1 and f0 underestimated. (b) Rate of debiasing, f1 and f0 overestimated.

Figure 6. Speed of debiasing of active debiasing vs. exploitation-only and pure exploration

C.3. Active debiasing on the Adult dataset

Fig. 7 illustrates the performance of our algorithm on the Adult dataset. Data is grouped based on race (White Ga and
non-White Gb), with labels y = 1 for income > $50k/year. A one-dimensional feature x ∈ R is constructed by conducting
logistic regression on four quantitative and qualitative features (education number, sex, age, workclass), based on the initial
training data.1 Using an input analyzer, we found Beta distributions as the best fit to the underlying distributions. We use
2.5% of the data to obtain a biased estimate of the parameter α. The remaining data arrives sequentially. We use α1 = 50
and α0 = 60 and a fixed decreasing {ϵt}, with the equality of opportunity fairness constraint imposed throughout.

C.4. Active debiasing on the FICO dataset

Fig. 8 also illustrates the performance of our algorithm on the FICO dataset (Reserve, 2007; Hardt et al., 2016), and shows
that it is successful in both groups and on both labels.

C.5. Additional experiments on the impact of depth of exploration

Figure 9 compares the effects of modifying the depth of exploration through the choice of reference points on the performance
of our active debiasing algorithm. In particular, we fix α1 = 50 as the reference point on the qualified agents’

1While this experiment maintains the same mapping throughout, the mapping could be periodically revised.
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(a) Debiasing Ga. (b) Debiasing Gb. (c) Adult dataset augmented with 60,000 syn-
thetic samples.

Figure 7. Illustration of the performance of active debiasing on the Adult dataset. The true underlying distributions were estimated
to be Beta distributions with parameters Beta(1.94, 3.32) and Beta(1.13, 4.99) for group a (White) label 1 and 0, respectively, and
Beta(1.97, 3.53) and Beta(1.19, 6.10) for group b (non-White) label 1 and 0, respectively. We used 2.5% of the data to fit initial assumed
distributions Beta(1.83, 3.32) and Beta(1.22, 4.99) for group a label 1 and 0, respectively, and Beta(1.74, 3.53) and Beta(1.28, 6.10) for
group b label 1 and 0, respectively. The equal opportunity fairness constraint is imposed throughout. The exploration frequency {ϵt} is
reduced with the fixed schedule of being subtracted by 0.1 after observing every 10000 samples

(a) Active Debiasing on the FICO dataset. (b) Difference w.r.t. the true value.

Figure 8. Illustration of the performance of active debiasing on the FICO dataset. The true underlying distributions were estimated
to be Beta distributions with parameters Beta(2.16, 1.27) and Beta(1.06, 3.98) for group a (White) label 1 and 0, respectively, and
Beta(1.71, 1.62) and Beta(1.16, 5.51) for group b (non-White) label 1 and 0, respectively. We used 0.3% of the data to fit initial assumed
distributions Beta(2.34, 1.27) and Beta(1.01, 3.98) for group a label 1 and 0, respectively, and Beta(1.98, 1.62) and Beta(1.42, 5.51) for
group b label 1 and 0, respectively. The equal opportunity fairness constraint is imposed throughout. The exploration frequency {ϵt} is
reduced with the fixed schedule of being subtracted by 0.1 after observing every 17000 samples
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estimates, and vary the reference points on unqualified agents’ estimates in α0 ∈ {50, 55, 60}, with smaller reference points
indicating deeper exploration (see Definition 3.1). In all three settings, we reduce {ϵt} following a fixed reduction schedule,
as described in Section 5.

We first note that as also observed earlier, increasing the depth of exploration (here, e.g., setting α0 = 50) leads to faster
speed of debiasing. This additional speed comes with a tradeoff: Fig. 9(a) shows that algorithms with deeper exploration
make more false positive errors, as they accept more unqualified individuals during exploration; by taking on this additional
risk, they can debias the data faster. In addition, as observed in Fig. 9(b), the increased speed of debiasing means that the
algorithm ultimately ends up making fewer false negative decisions on the qualified individuals as a result of obtaining better
estimates of their distributions.

We conclude that a decision maker can use the choice of the reference point α0 in our proposed algorithm to achieve their
preferred tradeoff between the risk incurred due to incorrect admissions (higher FP) vs the benefit from the increased speed
of debiasing and fewer missed opportunities (fewer FN).

(a) False positives (unqualified agents admitted) under each refer-
ence point

(b) False negatives (qualified agents rejected) under each refer-
ence point

Figure 9. Active debiasing under different choices of depth of exploration, with α1 = 50 and α0 = {50, 55, 60}. We reduce {ϵt}
following a fixed reduction schedule. The underlying feature distributions are Beta distributions.

C.6. Debiasing with two unknown parameters: a Gaussian distribution with two unknown parameters mean µ and
variance σ2

In this subsection, we extend our algorithm to debias the estimates of distributions with two unknown parameters. Specifically,
we consider a single group, and assume that the underlying feature-label distributions are Gaussian distributions for which
both the mean and variance are potentially incorrectly estimated by the firm.

To help our analysis and simplify the experiment setting, similar to the LBt setting in Definition 3.1, we can find a
corresponding UBt such that

UBt = (F̂ 1
t )

−1(2F̂ 1
t (ω̂

1
t )− F̂ 1

t (LBt))

where LBt is obtained from Definition 3.1, F̂ 0
t , (F̂ 1

t )
−1 are the cdf and inverse cdf of the estimates f̂1

t , respectively, and
ω̂1
t is (wlog) the α-th percentile of f̂1

t . We follow our active debiasing algorithm, with a choice of medians as
reference points (i.e., αi = 50,∀i), and setting the thresholds LBt and UBt so that the reference points are the medians
of the truncated distribution between the bounds and the classifier θt. We then follow Algorithm 1’s procedure with the
same type of exploitation and exploration decisions, and with the additional step that now we update both parameters when
updating the underlying estimates.

In order to update the mean and variance estimates for obtaining f̂ i
t , we find the sample mean and sample variance of the

collected data, incrementally. However, we note that the obtained sample mean and sample variances are for truncated
distributions; the truncations are due to the presence of a classifier which limits the admission of a samples, as well as due to
our proposed bounds LBt and UBt in the data collection procedure. We therefore need to convert between the estimated



Published as a workshop paper at ICML 2022

(a) Debiasing the means. (b) Debiasing the variances.

Figure 10. Debiasing algorithm when both mean and variance of a Gaussian distribution are incorrectly estimated. The true underlying
distributions are f1 ∼ N(10, 1) and f0 ∼ N(7, 1), and the initial estimates are f̂1

0 ∼ N(13, 1.3) and f̂0
0 ∼ N(5, 1.3). The algorithm

corrects both biases in the long run.

statistics for the truncated distribution and those of the full distribution accordingly.

Specifically, we obtain the sample mean of the truncated distribution as follows:

µ̂i
t+1 =

x1 + x2 + ...+ xni
+ x†

N i
t + 1

=
N i

t

N i
t + 1

µ̂i
t +

x†

N i
t + 1

, i ∈ {0, 1} .

where N i
t is the existing number of agents in the pool, and µi

t is the current (truncated) mean value estimate for label
i = {0, 1}.

For the sample (truncated) variance for group i, (ŝit)
2, the updating procedure is:

(ŝit+1)
2 =

∑Ni
t

j=1(µ̂
i
t − xj)

2 + (µ̂i
t − x†)2

N i
t + 1− 1

=

∑Ni
t

j=1 x
2
j + (x†)2 − (N i

t + 1)(µ̂i
t)

2

N i
t + 1− 1

=
N i

t − 1

N i
t

(ŝit)
2 +

(x†)2 − (µ̂i
t)

2

N i
t

, i ∈ {0, 1} .

After finding the above estimates of the mean and variance of the truncated distribution, we need to estimate the mean and
variance of the full underlying distribution. We first note that given our choice of bounds LBt and UBt, the mean of the
underlying distribution is (assumed to be) the same as that of the truncated distribution. To find the untruncated variance for
the full distribution, we use the following relation between the variances of truncated and untruncated Gaussian distributions:

V ar(x|a ≤ x ≤ b) = s2 = σ2

[
1 +

αϕ(α)− βϕ(β)

Φ(β)− Φ(α)
− (

ϕ(α)− ϕ(β)

Φ(β)− Φ(α)
)2

]
where α = a−µ

σ , β = b−µ
σ , ϕ(x) = 1√

2π
e−

1
2x

2

and Φ(x) = 1
2 (1 + erf( x√

2
)). In our algorithm, a = θt and b = UBt for

i = 1, and a = LBt and b = θt for i = 0. We note that in both cases, we can drop the third term in the above formula since
based on our algorithm, a, b are symmetric around the mean value, so that ϕ(α) = ϕ(β). We solve the above equations to
find σ̂i

t from the truncated estimates ŝit.

Figure 10 shows that the debiasing algorithm with the update procedures described above can debias both parameters in
the long run. We do observe that the debiasing of the variance initially increases its error. This is because, initially, when
observing samples outside of its believed range (due to a combination of incorrectly estimated means and variances), the
algorithm increases its estimates of the variance to explain such samples. However, as the estimate of the mean is corrected,
the variance can be reduced as well and become consistent with the collected observations. Ultimately, both parameters will
be correctly estimated.


