
Defining and Characterizing Reward Gaming

Joar Skalse 1 * Nikolaus H. R. Howe 2 3 Dmitrii Krasheninnikov 4 David Krueger 4 *

Abstract

We provide the first formal definition of reward
gaming, a phenomenon where optimizing an im-
perfect proxy reward function, R̃, leads to poor
performance according to a true reward function,
R. We say that a proxy is ungameable if increas-
ing the expected proxy return can never decrease
the expected true return. Intuitively, it should be
possible to create an ungameable proxy by over-
looking fine-grained distinctions between roughly
equivalent outcomes, but we show this is usually
not the case. A key insight is that the linearity of
reward (as a function of state-action visit counts)
makes ungameability a very strong condition. In
particular, for the set of all stochastic policies, two
reward functions can only be ungameable if one
of them is constant. We thus turn our attention to
deterministic policies and finite sets of stochas-
tic policies, where non-trivial ungameable pairs
always exist, and establish necessary and suffi-
cient conditions for the existence of simplifica-
tions, an important special case of ungameability.
Our results reveal a tension between using reward
functions to specify narrow tasks and aligning AI
systems with human values.

1. Introduction
It is well known that optimising a proxy can lead to
unintended outcomes: a boat spins in circles collecting
“powerups” instead of following the race track in a racing
game (Clark and Amodei, 2016); an evolved circuit lis-
tens in on radio signals from nearby computers’ oscillators
instead of building its own (Bird and Layzell, 2002); univer-
sities reject the most qualified applicants in order to appear
more selective and boost their ratings (Golden, 2001). In
the context of reinforcement learning (RL), such failures are

*Equal contribution 1University of Oxford 2Mila 3Université
de Montréal 4University of Cambridge. Correspondence to: David
Krueger <david.scott.krueger@gmail.com>.

ICML 2022 Workshop on Responsible Decision Making in Dy-
namic Environments, Baltimore, Maryland, USA, 2022. Copyright
2022 by the author(s).

called reward hacking or reward gaming.1

For AI systems that take actions in safety-critical real world
environments such as autonomous vehicles, algorithmic
trading, or content recommendation systems, these unin-
tended outcomes can be catastrophic. This makes aligning
autonomous AI systems with their users’ intentions crucial.
Precisely specifying which behaviours are or are not desir-
able or acceptable is challenging, however. Indeed, while
much study has been dedicated to the specification problem,
usually focusing on learning an approximation of the true
reward function (Ng et al., 2000; Ziebart, 2010; Leike et al.,
2018), use of these proxies can be dangerous, since they
might fail to include details about side-effects (Krakovna
et al., 2018; Turner et al., 2019) or power-seeking (Turner
et al., 2021) behavior. This raises the question motivating
our work: When is it safe to optimise a proxy?

To begin to answer this question, we consider a somewhat
simpler one: When could optimising a proxy lead to worse
behaviour? “Optimising”, in this context, does not refer to
finding a global, or even local, optimum, but rather running
a search process, such as stochastic gradient descent (SGD),
that yields a sequence of candidate policies, and tends to
move towards policies with higher (proxy) reward. We
make no assumptions about the path through policy space
that optimisation takes.2 Instead, we ask whether there is
any way in which improving a policy according to the proxy
could make the policy worse according to the true reward;
this is equivalent to asking if there exists a pair of policies π1,
π2 where the proxy prefers π1, but the true reward function
prefers π2. When this is the case, we refer to this pair of true
reward function and proxy reward function as gameable.

Given the strictness of our definition, it is not immediately
apparent that any non-trivial examples of ungameable re-
ward function pairs exist. And indeed, if we consider the set
of all stochastic policies, they do not (Section 4.1). However,
restricting ourselves to any finite set of policies guarantees
at least one non-trivial ungameable pair (Section 4.2).

1Reward hacking is sometimes defined to be a more general
category including reward gaming as well as reward tampering,
where an agent corrupts the process generating reward signals
(Leike et al., 2018).

2This assumption – although conservative – is reasonable be-
cause optimisation in state-of-the-art deep RL methods is poorly
understood and results are often highly stochastic and suboptimal.

Intuitively, we might expect a proxy to be a “simpler” ver-
sion of the true reward function. Noting that the definition of
ungameability is symmetric, we introduce the asymmetric
special case of simplification, and arrive at similar theo-
retical results for this notion. In the process, and through
examples, we show that seemingly natural ways of simpli-
fying reward functions often fail to produce simplifications
in our formal sense, and in fact fail to rule out the potential
for reward gaming.

We conclude with a discussion of the implications and limi-
tations of our work. Briefly, our work suggests that a proxy
reward function must satisfy demanding standards in order
for it to be safe to optimize. This in turn implies that the
reward functions learned by methods such as reward model-
ing and inverse RL are perhaps best viewed as auxiliaries
to policy learning, rather than specifications that should
be optimized. This conclusion is weakened, however, by
the conservativeness of our chosen definitions; future work
should explore when gameable proxies can be shown to be
safe in a probabilistic or approximate sense, or when subject
to only limited optimization.

2. Related Work
Examples of reward gaming abound in both RL and other
areas of AI; Krakovna et al. (2020) provide an extensive
list. Reward gaming can occur suddenly. Ibarz et al. (2018)
and Pan et al. (2022) showcase plots similar to one in Fig-
ure 1a. Despite the prevalence and potential severity of
reward gaming, to our knowledge Pan et al. (2022) pro-
vide the first peer-reviewed work that focuses specifically
on it. Their work is purely empirical; they manually con-
struct proxy rewards for several diverse environments, and
evaluate whether optimizing these proxies leads to reward
gaming; in 5 of their 9 settings, it does.

Training time

T
ru
e
re
w
ar
d

P
ro
xy

re
w
ar
d

(a)

State

R
ew

ar
d
(S
ta
te
)

A

B

C

(b)

Figure 1: (a) An illustration of reward gaming when opti-
mizing a proxy. The true reward increases and then drops
off, while the proxy reward continues to increase. (b) Plot
of two reward curves as a function of state. To see the game-
ability, from B, consider the policy which moves left to A
or right to C with equal probability. The Gaussian reward
function says this is better than staying at B, but the step
reward function says it is worse.

In another closely related work, Zhuang and Hadfield-
Menell (2020) examine what happens when the proxy re-
ward function depends on a strict subset of features relevant
for the true reward. They show that optimizing the proxy can
lead to arbitrarily low true reward under suitable assump-
tions. This can be seen as a seemingly valid simplification
of the true reward that turns out to be (highly) gameable.
While their result only applies to environments with de-
creasing marginal utility and increasing opportunity cost,
we demonstrate gameability is an issue in arbitrary MDPs.

3. Preliminaries and Definitions
We expect readers to be familiar with the basics of RL,
which can be found in Sutton and Barto (2018). The return
of a trajectory is the discounted sum of rewards G(τ)

.
=∑∞

t=0 γ
trt, and the value of a policy is the expected return

J(π)
.
= Eτ∼π[G(τ)]. We derive policy (preference) order-

ings from reward functions by ordering policies according to
their value. In this paper, we assume that S and A are finite,
that |A| > 1, that all states are reachable, and that R(s, a, s′)
has finite mean for all s, a, s′. In our work, we consider var-
ious reward functions for a given environment, which is
then formally a Markov decision process without reward
MDP \R .

= (S,A, T, I, , γ). Having fixed an MDP \R,
any reward function can be viewed as a function of only the
current state and action by marginalizing over transitions:
R(s, a)

.
=

∑
s′∼T (s′|s,a) R(s, a, s′), we adopt this view

from here on. We define the (discounted) visit counts of
a policy as Fπ(s, a)

.
= Eτ∼π[

∑∞
i=0 γ

i
1(si = s, ai = a)].

Note that J(π) =
∑

s,a R(s, a)Fπ(s, a), which we also
write as ⟨R,Fπ⟩. When considering multiple reward func-
tions in an MDP \ R, we define JR(π)

.
= ⟨R,Fπ⟩ and

sometimes use Ji(π)
.
= ⟨Ri,Fπ⟩ as shorthand. We also

use F : Π → R|S||A| to denote the embedding of policies
into Euclidean space via their visit counts.
Definition 1. A pair of reward functions R1, R2 are
gameable relative to policy set Π and environment
(S,A, T, I, , γ) if there exist π, π′ ∈ Π such that

J1(π) < J1(π
′) & J2(π) > J2(π

′),

else they are ungameable.
Ungameability is symmetric; this can be seen be swapping
π and π′ in Definition 1. We say that R1 and R2 are equiv-
alent on a set of policies Π if J1 and J2 induce the same
ordering of Π, and that R is trivial on Π if J(π) = J(π′)
for all π, π′ ∈ Π.
Definition 2. R2 is a simplification of R1 relative to policy
set Π if for all π, π′ ∈ Π,

J1(π) < J1(π
′) =⇒ J2(π) ≤ J2(π

′) &
J1(π) = J1(π

′) =⇒ J2(π) = J2(π
′)

and there exist π, π′ ∈ Π such that J2(π) = J2(π
′) but

J1(π) ̸= J1(π
′). Moreover, if R2 is trivial then we say that

this is a trivial simplification.

4. Results
Our results are aimed at understanding when it is possible
to have an ungameable proxy reward function. Section 4.1
establishes that (non-trivial) ungameability is impossible
when considering the set of all policies – Figure 1b shows
an example of this. We might imagine that restricting our-
selves to a set of sufficiently good (according to the proxy)
policies would remove this limitation, but we show that this
is not the case. In Section 4.2 we analyze finite policy sets
(with deterministic policies as a special case), and establish
necessary and sufficient conditions for ungameability and
simplification. Finally, we show via example that non-trivial
simplifications are also possible for some infinite policy sets.

4.1. Infinite Policy Sets

We might suspect or hope that some environments allow for
reward pairs that are not equivalent or trivial, and that are
ungameable. We will show that this is not the case, unless
we impose restrictions on the set of policies we consider. In
particular, there cannot be any interesting ungameability on
any set of policies which contains an open subset. Formally,
a set of (stationary) policies Π̇ is open if, when represented
as a set of |S||A|-dimensional vectors, it is open in the
smallest affine space that contains all stationary policies
(also represented as |S||A|-dimensional vectors). This space
is |S|(|A| − 1)-dimensional, since all action probabilities
sum to 1. We will use the following lemma:
Lemma 1. In any MDP \R, if Π̇ is an open set of policies,
then F(Π̇) is open in R|S|(|A|−1), and F is a homeomor-
phism between Π̇ and F(Π̇).

Using this lemma, we can show that interesting ungameabil-
ity is impossible on any set of stationary policies Π̂ which
contains an open subset Π̇. Roughly, if F(Π̇) is open, and
R1 and R2 are non-trivial and ungameable on Π̇, then the
fact that J1 and J2 have a linear structure on F(Π̂) implies
that R1 and R2 must be equivalent on Π̇. From this, and
the fact that F(Π̇) is open, it follows that R1 and R2 are
equivalent everywhere.
Theorem 1. In any MDP \ R, if Π̂ contains an open set,
then any pair of reward functions that are ungameable and
non-trivial on Π̂ are equivalent on Π̂.

This also implies that non-trivial simplification is impossi-
ble for any such Π̂, since simplification is a special case of
ungameability. Also note that Theorem 1 makes no assump-
tions about the transition function, etc. From this result, we
can show that interesting ungameability always is impos-
sible on the set Π of all (stationary) policies. In particular,
note that the set Π̃ of all policies that always take each action
with positive probability is an open set, and that Π̃ ⊂ Π.
Corollary 1. In any MDP \ R, any pair of reward func-
tions that are ungameable and non-trivial on the set of all
(stationary) policies Π are equivalent on Π.

Intuitively, Theorem 1 can be applied to any policy set with
“volume” in policy space. For example, we might not care
about the gameability resulting from policies with low proxy
reward, as we would not expect a sufficiently good learning
algorithm to learn such policies. This leads us to consider
the following definition:

Definition 3. A (stationary) policy π is ε-suboptimal if
J(π) ≥ J(π⋆)− ε.

Alternatively, if the learning algorithm always uses a policy
that is “nearly” deterministic (but with some probability of
exploration), then we might not care about gameability re-
sulting from very stochastic policies, leading us to consider
the following definition:

Definition 4. A (stationary) policy π is δ-deterministic if
∀s ∈ S∃a ∈ A : P(π(s) = a) ≥ δ.

Unfortunately, both of these sets contain open subsets,
which means they are subject to Theorem 1.

Corollary 2. In any MDP \R, any pair of reward functions
that are ungameable and non-trivial on the set of all ε-
suboptimal policies (ε > 0) Πε are equivalent on Πε, and
any pair of reward functions that are ungameable and non-
trivial on the set of all δ-deterministic policies (δ < 1) Πδ

are equivalent on Πδ .

For infinite policy sets that do not contain open sets, we
sometimes – but not always – have ungameable reward
pairs, see Figure 2. Here we consider policies A,B,C, and
suppose J1(C) < J1(B) < J1(A). For Π = {A} ∪ {λB +
(1− λ)C : λ ∈ [0, 1]}, we can simplify such that J2(C) =
J2(B) < J2(A). However, for Π = {λA+(1−λ)B : λ ∈
[0, 1]}∪{λ′B+(1−λ′)C : λ′ ∈ [0, 1]}∪{λ′′C+(1−λ′′)A :
λ′′ ∈ [0, 1]}, we cannot do so without setting J(π) = J(π′)
for all π, π′ ∈ Π.

(a) (b)

Figure 2: Illustration of two results of simplification on
infinite policy sets. Solid points and solid line segments
represent policies; rewards increase along the vertical axis.
In (a), nontrivial simplification is possible by keeping A
and BC at different heights. In (b), attempting the same
simplification results in gameability; the only possible sim-
plification is the trivial one.

4.2. Finite Policy Sets

We now turn our attention to the case of finite policy sets.
Note that this includes the set of all deterministic policies,
since we restrict our analysis to finite MDPs. Surprisingly,
here we find that non-trivial non-equivalent ungameable
reward pairs always exist.

Theorem 2. For any MDP \ R, any finite set of policies
Π̂ containing at least two π, π′ such that F(π) ̸= F(π′),
and any reward function R1, there is a non-trivial reward
function R2 such that R1 and R2 are ungameable but not
equivalent.

This proof proceeds by finding a path from R1 to another
reward function R3 that is gameable with respect to R1.
Along the way to reversing one of R1’s inequalities, we
must encounter a reward function R2 that instead replaces
it with equality. This path can be constructed so as to avoid
any reward functions that produce trivial policy orderings,
thus guaranteeing R2 is non-trivial. For a simplification to
exist, we require some further conditions, as established by
the following theorem:

Theorem 3. Let Π̂ be a finite set of policies, and R a reward
function. The following procedure determines if there exists
a non-trivial simplification of R in a given MDP \ R:

1. Let E1 . . . Em be the partition of Π̂ where π, π′ belong
to the same set iff J(π) = J(π′).

2. For each such set Ei, select a policy πi ∈ Ei and let
Zi be the set of vectors that is obtained by subtracting
F(πi) from each element of F(Ei).

Then there is a non-trivial simplification of R iff dim(Z1 ∪
· · · ∪Zm) ≤ dim(F(Π̂))− 2, where dim(S) is the number
of linearly independent vectors in S.

This means that while there are always ungameable reward
functions for any finite policy set, there may not be any ways
of simplifying a particular true reward function. As with
Theorem 2, the proof proceeds by finding a path from R to
a reward function that is gameable with respect to R, and
showing that there is a non-trivial simplification of R along
this path. However, in Theorem 2 it was sufficient to show
that there are no trivial reward functions along the path,
whereas here we additionally need that if J(π) = J(π′)
then J ′(π) = J ′(π′) for all functions R′ on the path — this
is what the extra conditions ensure.

There are also intuitive special cases of Theorem 3, for
example, when each Ei is a singleton.

Corollary 3. For any finite set of policies Π̂, any envi-
ronment, and any reward function R, if |Π̂| ≥ 2 and
J(π) ̸= J(π′) for all π, π′ ∈ Π̂ then there is a non-trivial
simplification of R.

For concreteness, we examine the set of deterministic
policies in a simple MDP \ R with S = {0, 1}, A =
{0, 1}, T (s, a) = a, I = U{0, 1}, γ = 0.5. This example
has 24 policy orderings which are realizable via some re-
ward function, of which 12 are simplifications (i.e. include
equalities). See Appendix for details and code.

5. Discussion
Limitations The main limitation of our work is the strict-
ness of our definition. While we theoretically characterize
gameability, gameability is far from a guarantee of gaming.
Extensive empirical work is necessary to better understand
the factors that influence the occurrence and severity of
reward gaming in practice. Furthermore, our definition is
symmetric, but the existence of complex behaviors that yield
low proxy reward and high true reward is much less concern-
ing than the reverse, as these behaviors are unlikely to be
discovered as a result of optimizing the proxy. For example,
it is very unlikely that our agent would solve climate change
in the course of learning how to wash dishes. To account
for this issue, future work should explore realistic assump-
tions about the probability of encountering a given sequence
of policies when optimizing the proxy, and measure the
proxy’s gameability in proportion to this probability.

Implications Our work suggests that Markov reward func-
tions might not be suitable for specifying narrow tasks, as we
have seen that attempts to simplify a true reward function of-
ten lead to gameability. Such reasoning suggests that reward
functions must instead encode broad human values. This
seems challenging, perhaps intractably so, indicating that
alternatives to reward optimization may be more promising.
Potential alternatives include imitation learning (Ross et al.,
2011), constrained RL (Szepesvári, 2020), quantilizers (Tay-
lor, 2016), and incentive management (Everitt et al., 2019).
Relatedly, scholars have criticized the assumption that hu-
man values can be encoded as rewards (Dobbe et al., 2021),
and challenged the use of metrics more broadly (O’Neil,
2016; Thomas and Uminsky, 2022), citing Goodhart’s Law
(Manheim and Garrabrant, 2018; Goodhart, 1975). A con-
cern more specific to reward function optimization is power-
seeking (Turner et al., 2021; Bostrom, 2012; Omohundro,
2008), which could make even a slight misspecification of
rewards catastrophic. Despite such concerns, approaches
to specification based on learning reward functions remain
popular (Fu et al., 2017; Nakano et al., 2021). So far, reward
gaming has usually been avoidable in practice, although
some care must be taken (Stiennon et al., 2020). Brown
et al. (2020); Leike et al. (2018) argue that learning a reward
model can help exceed human performance and generalize
to new settings. But we find learned rewards are almost cer-
tainly gameable, and so cannot be safely optimized. Thus
we recommend viewing such approaches as a means of
learning a policy in a controlled setting, which should then
be validated before being deployed.

References
Bird, J. and Layzell, P. (2002). The evolved radio and its

implications for modelling the evolution of novel sensors.
In Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No. 02TH8600), volume 2,
pages 1836–1841. IEEE.

Bostrom, N. (2012). The superintelligent will: Motivation
and instrumental rationality in advanced artificial agents.
Minds and Machines, 22(2):71–85.

Brown, D. S., Goo, W., and Niekum, S. (2020). Better-than-
demonstrator imitation learning via automatically-ranked
demonstrations. In Conference on robot learning, pages
330–359. PMLR.

Clark, J. and Amodei, D. (2016). Faulty Reward Functions
in the Wild. OpenAI Codex https://openai.com/
blog/faulty-reward-functions/.

Dobbe, R., Gilbert, T. K., and Mintz, Y. (2021). Hard
Choices in Artificial Intelligence. CoRR, abs/2106.11022.

Everitt, T., Ortega, P. A., Barnes, E., and Legg, S. (2019).
Understanding agent incentives using causal influence
diagrams. Part I: Single action settings. arXiv preprint
arXiv:1902.09980.

Fu, J., Luo, K., and Levine, S. (2017). Learning robust
rewards with adversarial inverse reinforcement learning.
arXiv preprint arXiv:1710.11248.

Golden, D. (2001). Glass Floor: Colleges Reject Top Ap-
plicants, Accepting Only the Students Likely to Enroll.
The Wall Street Journal. https://www.wsj.com/
articles/SB991083160294634500.

Goodhart, C. A. (1975). Problems of monetary management:
the UK experience. In of Australia, R. B., editor, Papers
in monetary economics. Reserve Bank of Australia.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. (2018). Reward learning from human pref-
erences and demonstrations in atari. Advances in neural
information processing systems, 31.

Krakovna, V., Orseau, L., Kumar, R., Martic, M., and Legg,
S. (2018). Penalizing side effects using stepwise relative
reachability. CoRR, abs/1806.01186.

Krakovna, V., Uesato, J., Mikulik, V., Rahtz, M., Everitt,
T., Kumar, R., Kenton, Z., Leike, J., and Legg, S. (2020).
Specification gaming: the flip side of AI ingenuity.

Leike, J., Krueger, D., Everitt, T., Martic, M., Maini, V., and
Legg, S. (2018). Scalable agent alignment via reward
modeling: a research direction. CoRR, abs/1811.07871.

Manheim, D. and Garrabrant, S. (2018). Categorizing Vari-
ants of Goodhart’s Law. CoRR, abs/1803.04585.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim,
C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W., et al.
(2021). WebGPT: Browser-assisted question-answering
with human feedback. arXiv preprint arXiv:2112.09332.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy in-
variance under reward transformations: Theory and ap-
plication to reward shaping. In Icml, volume 99, pages
278–287.

Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for inverse
reinforcement learning. In Icml, volume 1, page 2.

Omohundro, S. M. (2008). The basic AI drives.

O’Neil, C. (2016). Weapons of math destruction: How
big data increases inequality and threatens democracy.
Crown Publishing Group.

Pan, A., Bhatia, K., and Steinhardt, J. (2022). The Effects
of Reward Misspecification: Mapping and Mitigating
Misaligned Models. arXiv preprint arXiv:2201.03544.

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of
imitation learning and structured prediction to no-regret
online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics,
pages 627–635. JMLR Workshop and Conference Pro-
ceedings.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
(2020). Learning to summarize with human feedback.
Advances in Neural Information Processing Systems,
33:3008–3021.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.

Szepesvári, C. (2020). Constrained MDPs
and the reward hypothesis. http://
readingsml.blogspot.com/2020/03/
constrained-mdps-and-reward-hypothesis.
html.

Taylor, J. (2016). Quantilizers: A safer alternative to max-
imizers for limited optimization. In Workshops at the
Thirtieth AAAI Conference on Artificial Intelligence.

Thomas, R. L. and Uminsky, D. (2022). Reliance on metrics
is a fundamental challenge for AI. Patterns, 3(5):100476.

Turner, A. M., Hadfield-Menell, D., and Tadepalli, P. (2019).
Conservative Agency via Attainable Utility Preservation.
CoRR, abs/1902.09725.

https://openai.com/blog/faulty-reward-functions/
https://openai.com/blog/faulty-reward-functions/
https://www.wsj.com/articles/SB991083160294634500
https://www.wsj.com/articles/SB991083160294634500
http://readingsml.blogspot.com/2020/03/constrained-mdps-and-reward-hypothesis.html
http://readingsml.blogspot.com/2020/03/constrained-mdps-and-reward-hypothesis.html
http://readingsml.blogspot.com/2020/03/constrained-mdps-and-reward-hypothesis.html
http://readingsml.blogspot.com/2020/03/constrained-mdps-and-reward-hypothesis.html

Turner, A. M., Smith, L., Shah, R., Critch, A., and Tade-
palli, P. (2021). Optimal Policies Tend to Seek Power.
Advances in Neural Information Processing Systems.

Zhuang, S. and Hadfield-Menell, D. (2020). Consequences
of misaligned AI. Advances in Neural Information Pro-
cessing Systems, 33:15763–15773.

Ziebart, B. D. (2010). Modeling purposeful adaptive be-
havior with the principle of maximum causal entropy.
Carnegie Mellon University.

A. Overview
Section B contains proofs of the main theoretical results.
Section C expands on examples given in the main text. Sec-
tion D presents an ungameability diagram for a generic set
of three policies a, b, c; Section E shows a simplification
diagram of the same policies.

B. Proofs
Before proving our results, we restate assumptions and def-
initions. First, recall the preliminaries from Section 4.1,
and in particular, that we use F : Π → R|S||A| to denote
the embedding of policies into Euclidean space via their
discounted state-action visit counts, i.e.;

F(π)[s, a] =

∞∑
t=0

γtP(St = s,At = a).

Given a reward function R, let R⃗ ∈ R|S||A| be the vec-
tor where R⃗[s, a] = ES′∼T (s,a)[R(s, a, S′)]. Note that
J(π) = F(π) · R⃗.

We say R1 and R2 are equivalent on a set of policies Π
if J1 and J2 induce the same ordering of Π, and that R is
trivial on Π if J(π) = J(π′) for all π, π′ ∈ Π. We also
have the following definitions from Sections 4 and 5:

Definition 1. A pair of reward functions R1, R2 are
gameable relative to policy set Π and an environment
(S,A, T, I, , γ) if there exist π, π′ ∈ Π such that

J1(π) < J1(π
′) & J2(π) > J2(π

′),

else they are ungameable.

Definition 2. R2 is a simplification of R1 relative to policy
set Π if for all π, π′ ∈ Π,

J1(π) < J1(π
′) =⇒ J2(π) ≤ J2(π

′)

& J1(π) = J1(π
′) =⇒ J2(π) = J2(π

′)

and there exist π, π′ ∈ Π such that J2(π) = J2(π
′) but

J1(π) ̸= J1(π
′). Moreover, if R2 is trivial then we say that

this is a trivial simplification.

Note that these definitions only depend on the policy order-
ings associated with R2 and R1, and so we can (and do)
also speak of (ordered) pairs of policy orderings being sim-
plifications or gameable. We also make use of the following
definitions:

Definition 3. A (stationary) policy π is ε-suboptimal if
J(π) ≥ J(π⋆)− ε, where ε > 0

Definition 4. A (stationary) policy π is δ-deterministic if
∀s ∈ S ∃a ∈ A : P(π(s) = a) ≥ δ, where δ < 1.

B.1. Non-trivial Ungameability Requires Restricting the
Policy Set

Formally, a set of (stationary) policies Π̇ is open if F(Π̇) is
open in the smallest affine space that contains all stationary
policies (also represented as |S||A|-dimensional vectors).
This space is |S|(|A| − 1)-dimensional, since all action
probabilities sum to 1.

We require two more propositions for the proof of this
lemma.

Proposition 1. If Π̇ is open then F is injective on Π̇.

Proof. First note that, since π(a | s) ≥ 0, we have that if
Π̇ is open then π(a | s) > 0 for all s, a for all π ∈ Π̇. In
other words, all policies in Π̇ take each action with positive
probability in each state.

Now suppose F(π) = F(π′) for some π, π′ ∈ Π̃. Next,
define wπ as

wπ(s) =

∞∑
t=0

γtPτ∼π(St = s).

Note that if F(π) = F(π′) then wπ = wπ′ , and moreover
that

F(π)[s, a] = wπ(s)π(a | s).

Next, since π takes each action with positive probability in
each state, we have that π visits every state with positive
probability. This implies that wπ(s) ̸= 0 for all s, which
means that we can express π as

π(a | s) = F(π)[s, a]

wπ(s)
.

This means that if F(π) = F(π′) for some π, π′ ∈ Π̃ then
π = π′.

Note that F is not injective on Π; if there is some state s that
π reaches with probability 0, then we can alter the behaviour
of π at s without changing F(π). But every policy in an
open policy set Π̇ visits every state with positive probabil-
ity, which then makes F injective. In fact, Proposition 1
straightforwardly generalises to the set of all policies that
visit all states with positive probability.

Proposition 2. Im(F) is located in a linear subspace with
|S|(|A| − 1) dimensions.

Proof. To show that Im(F) is located in a linear subspace
with |S|(|A| − 1) dimensions, first note that

∑
s,a

F(π)[s, a] =

∞∑
t=0

γt =
1

1− γ

for all π. That is, Im(F) is located in an affine space of
points with a fixed ℓ1-norm, and this space does not contain
the origin.

Next, note that J(π) = F(π) · R⃗. This means that if know-
ing the value of J for all π determines R⃗ modulo at least
n free variables, then Im(F) contains at most |S||A| − n
linearly independent vectors. Next recall potential shaping
(Ng et al., 1999). In brief, given a reward function R and
a potential function Φ : S → R, we can define a shaped
reward function R′ by

R′(s, a, s′) = R(s, a, s′) + γΦ(s′)− Φ(s),

or, alternatively, if we wish R′ to be defined over the domain
S ×A,

R′(s, a) = R(s, a) + γES′∼T (s,a)[Φ(S
′)]− Φ(s).

In either case, it is possible to show that if R′ is produced by
shaping R with Φ, and ES0∼I [Φ(S0)] = 0, then J(π) =
J ′(π) for all π. This means that knowing the value of J(π)
for all π determines R⃗ modulo at least |S|−1 free variables,
which means that Im(F) contains at most |S||A| − (|S| −
1) = |S|(|A|−1)+1 linearly independent vectors. Since the
smallest affine space that contains Im(F) does not contain
the origin, this in turn means that Im(F) is located in a
linear subspace with = |S|(|A| − 1)+1− 1 = |S|(|A| − 1)
dimensions.

Lemma 1. In any MDP \R, if Π̇ is an open set of policies,
then F(Π̇) is open in R|S|(|A|−1), and F is a homeomor-
phism between Π̇ and F(Π̇).

Proof. By the Invariance of Domain Theorem, if

1. U is an open subset of Rn, and

2. f : U → Rn is an injective continuous map,

then f(U) is open in Rn and f is a homeomorphism be-
tween U and f(U). We will show that F and Π̇ satisfy the
requirements of this theorem.

We begin by noting that Π can be represented as a set of
points in R|S|(|A|−1). We do this by considering each policy
π as a vector π⃗ of length |S||A|, where π⃗[s, a] = π(a | s).
We also have

∑
a∈A π(a | s) = 1 for all s, which means

that once we have set the probabilities of π(a | s) for each
a ∈ A\{a′}, then π(a′ | s) is also determined; this removes
one degree of freedom for each state. From now on, we will
assume that Π is embedded in R|S|(|A|−1) in this way.

By assumption, Π̇ is an open set in R|S|(|A|−1). Moreover,
by Proposition 2, we have that F is (isomorphic to) a map-
ping Π̇ → R|S|(|A|−1). By Proposition 1, we have that
F is injective on Π̇. Finally, F is continuous; this can be

seen from its definition. We can therefore apply the Invari-
ance of Domain Theorem, and obtain that F(Π̇) is open
in R|S|(|A|−1), and that F is a homeomorphism between Π̇
and F(Π̇).

Theorem 1. In any MDP \ R, if Π̂ contains an open set,
then any pair of reward functions that are ungameable and
non-trivial on Π̂ are equivalent on Π̂.

Proof. Let R1 and R2 be any two ungameable and non-
trivial reward functions. We will show that, for any π, π′ ∈
Π̂, we have J1(π) = J1(π

′) =⇒ J2(π) = J2(π
′), and

thus, by symmetry, J1(π) = J1(π
′) ⇐⇒ J2(π) = J2(π

′).
Since R1 and R2 are ungameable, this further means that
they have exactly the same policy order, i.e. that they are
equivalent.

Choose two arbitrary π, π′ ∈ Π̂ with J1(π) = J1(π
′) and

let f .
= F(π), f ′ .

= F(π′). The proof has 3 steps:

1. We find analogues for f and f ′, f̃ and f̃ ′, within the
same open ball in F(Π̂).

2. We show that the tangent hyperplanes of R⃗1 and R⃗2 at
f̃ must be equal to prevent neighbors of f̃ from making
R1 and R2 gameable.

3. We use linearity to show that this implies that J2(π) =
J2(π

′).

Step 1: By assumption, Π̂ contains an open set Π̇. Let π̂
be some policy in Π̇, and let f̂ .

= F(π̂). Since Π̇ is open,
Lemma 1 implies that F(Π̇) is open in R|S|(|A|−1). This
means that, if v, v′ are the vectors such that f̂ + v = f and
f̂ + v′ = f ′, then there is a positive but sufficiently small
δ such that f̃ .

= f̂ + δv and f̃ ′ .
= f̂ + δv′ both are located

in F(Π̇), see Figure 3. This further implies that there are
policies π̃, π̃′ ∈ Π̇ such that F(π̃) = f̃ and F(π̃′) = f̃ ′.

Step 2: Recall that J(π) = F(π) · R⃗.
Since R1 is non-trivial on Π̂, it induces a
(|S|(|A| − 1) − 1)-dimensional hyperplane tangent
to R⃗1 corresponding to all points x ∈ R|S|(|A|−1) such
that x · R⃗1 = f̃ · R⃗1, and similarly for R2. Call these
hyperplanes H1 and H2, respectively. Note that f̃ is
contained in both H1 and H2.

Next suppose H1 ̸= H2. Then, we would be able to find
a point f12 ∈ F(Π̇), such that f12 · R⃗1 > f̃ · R⃗1 but
f12 · R⃗2 < f̃ · R⃗2. This, in turn, means that there is a
policy π12 ∈ Π̇ such that F(π12) = f12, and such that
J1(π12) > J1(π̃) but J2(π12) < J2(π̃). Since R1 and R2

are ungameable, this is a contradiction. Thus H1 = H2.

Step 3: Since J1(π) = J1(π
′), we have that f ·R⃗1 = f ′·R⃗1.

By linearity, this implies that f̃ · R⃗1 = f̃ ′ · R⃗1; we can see

Figure 3: Illustration of the various realizable feature counts used in the proof of Theorem 1.

this by expanding f̃ = f̂ + δv and f̃ ′ = f̂ + δv′. This
means that f̃ ′ ∈ H1. Now, since H1 = H2, this means that
f̃ ′ ∈ H2, which in turn implies that f̃ · R⃗2 = f̃ ′ · R⃗2. By
linearity, this then further implies that f · R⃗2 = f ′ · R⃗2,
and hence that J2(π) = J2(π

′). Since π, π′ were chosen
arbitrarily, this means that J1(π) = J1(π

′) =⇒ J2(π) =
J2(π

′).

Corollary 1. In any MDP \ R, any pair of reward func-
tions that are ungameable and non-trivial on the set of all
(stationary) policies Π are equivalent on Π.

Proof. This corollary follows from Theorem 1, if we note
that the set of all policies does contain an open set. This
includes, for example, the set of all policies in an ϵ-ball
around the policy that takes all actions with equal probability
in each state.

Corollary 2. In any MDP \R, any pair of reward functions
that are ungameable and non-trivial on the set of all ε-
suboptimal policies (ε > 0) Πε are equivalent on Πε, and
any pair of reward functions that are ungameable and non-
trivial on the set of all δ-deterministic policies (δ < 1) Πδ

are equivalent on Πδ .

Proof. To prove this, we will establish that both Πε and Πδ

contain open policy sets, and then apply Theorem 1.

Let us begin with Πδ. First, let π be some deterministic
policy, and let πϵ be the policy that in each state with proba-
bility 1−ϵ takes the same action as π, and otherwise samples
an action uniformly. Then if δ < ϵ < 1, πϵ is the center of
an open ball in Πδ. Thus Πδ contains an open set, and we
can apply Theorem 1.

For Πε, let π⋆ be an optimal policy, and apply an analogous
argument.

B.2. Finite Policy Sets

Theorem 2. For any MDP \ R, any finite set of policies
Π̂ containing at least two π, π′ such that F(π) ̸= F(π′),
and any reward function R1, there is a non-trivial reward
function R2 such that R1 and R2 are ungameable but not
equivalent.

Proof. If R1 is trivial, then simply choose any non-trivial
R2. Otherwise, the proof proceeds by finding a path from
R⃗1 to −R⃗1, and showing that there must be an R⃗2 on this
path such that R2 is non-trivial and ungameable with respect
to R1, but not equivalent to R1.

The key technical difficulty is to show that there exists a
continuous path from R1 to −R1 in R|S||A| that does not
include any trivial reward functions. Once we’ve established
that, we can simply look for the first place where an inequal-
ity is reversed – because of continuity, it first becomes an
equality. We call the reward function at that point R2, and
note that R2 is ungameable wrt R1 and not equivalent to
R1. We now walk through the technical details of these
steps.

First, note that J(π) = F(π) · R⃗ is continuous in R⃗. This
means that if J1(π) > J2(π

′) then there is a unique first
vector R⃗2 on any path from R⃗1 to −R⃗1 such that F(π) ·
R⃗2 ̸> F(π) · R⃗2, and for this vector we have that F(π) ·
R⃗2 = F(π) · R⃗2. Since Π̂ is finite, and since R1 is not
trivial, this means that on any path from R⃗1 to −R⃗1 there
is a unique first vector R⃗2 such that R2 is not equivalent to

R1, and then R2 must also be a ungameable with respect to
R1.

It remains to show that there is a path from R⃗1 to −R⃗1 such
that no vector along this path corresponds to a trivial reward
function. Once we have such a path, the argument above
implies that R2 must be a non-trivial reward function that is
ungameable with respect to R1. We do this using a dimen-
sionality argument. If R is trivial on Π̂, then there is some
c ∈ R such that F(π) · R⃗ = c for all π ∈ Π̂. This means
that if F(Π̂) has at least d linearly independent vectors, then
the set of all such vectors R⃗ forms a linear subspace with
at most |S||A| − d dimensions. Now, since Π̂ contains at
least two π, π′ such that F(π) ̸= F(π′), we have that F(Π̂)
has at least 2 linearly independent vectors, and hence that
the set of all reward functions that are trivial on Π̂ forms a
linear subspace with at most |S||A| − 2 dimensions. This
means that there must exist a path from R⃗1 to −R⃗1 that
avoids this subspace, since only a hyperplane (with dimen-
sion |S||A| − 1) can split R|S||A| into two disconnected
components.

Theorem 3. Let Π̂ be a finite set of policies, and R a reward
function. The following procedure determines if there exists
a non-trivial simplification of R in a given MDP \ R:

1. Let E1 . . . Em be the partition of Π̂ where π, π′ belong
to the same set iff J(π) = J(π′).

2. For each such set Ei, select a policy πi ∈ Ei and let
Zi be the set of vectors that is obtained by subtracting
F(πi) from each element of F(Ei).

Then there is a non-trivial simplification of R iff dim(Z1 ∪
· · · ∪Zm) ≤ dim(F(Π̂))− 2, where dim(S) is the number
of linearly independent vectors in S.

Proof. This proof uses a similar proof strategy as Theo-
rem 2. However, in addition to avoiding trivial reward
functions on the path from R⃗1 to −R⃗1, we must also ensure
that we stay within the “equality-preserving space”, to be
defined below.

First recall that F(Π̂) is a set of vectors in R|S||A|. If
dim(F(Π̂)) = D then these vectors are located in a D-
dimensional linear subspace. Therefore, we will consider
F(Π̂) to be a set of vectors in RD. Next, recall that any
reward function R induces a linear function L on RD, such
that J = L ◦ F , and note that there is a D-dimensional
vector R⃗ that determines the ordering that R induces over
all points in RD. To determine the values of J on all points
in RD we would need a (D + 1)-dimensional vector, but
to determine the ordering, we can ignore the height of the
function. In other words, L(x) = x · R⃗ + L(⃗0), for any
x ∈ RD. Note that this is a different vector representation

of reward functions than that which was used in Theorem 2
and before.

Suppose R2 is a reward function such that if J1(π) =
J1(π

′) then J2(π) = J2(π
′), for all π, π′ ∈ Π̂. This

is equivalent to saying that L2(F(π)) = L2(F(π′)) if
π, π′ ∈ Ei for some Ei. By the properties of linear func-
tions, this implies that if F(Ei) contains di linearly indepen-
dent vectors then it specifies a (di − 1)-dimensional affine
space Si such that L2(x) = L2(x

′) for all points x, x′ ∈ Si.
Note that this is the smallest affine space which contains all
points in Ei. Moreover, L2 is also constant for any affine
space S̄i parallel to Si. Formally, we say that S̄i is parallel
to Si if there is a vector z such that for any y ∈ S̄i there is
an x ∈ Si such that y = x+z. From the properties of linear
functions, if L2(x) = L2(x

′) then L2(x+ z) = L2(x
′+ z).

Next, from the transitivity of equality, if we have two affine
spaces S̄i and S̄j , such that L2 is constant over each of
S̄i and S̄j , and such that S̄i and S̄j intersect, then L2 is
constant over all points in S̄i ∪ S̄j . From the properties of
linear functions, this then implies that L2 is constant over all
points in the smallest affine space S̄i⊗ S̄j containing S̄i and
S̄j , given by combining the linearly independent vectors
in S̄i and S̄j . Note that S̄i ⊗ S̄j has between max(di, dj)
and (di + dj − 1) dimensions. In particular, since the affine
spaces of Z1 . . . Zm intersect (at the origin), and since L2

is constant over these spaces, we have that L2 must be
constant for all points in the affine space Z which is the
smallest affine space containing Z1 ∪ · · · ∪ Zm. That is,
if R2 is a reward function such that J1(π) = J1(π

′) =⇒
J2(π) = J2(π

′) for all π, π′ ∈ Π̂, then L2 is constant over
Z . Moreover, if L2 is constant over Z then L2 is also
constant over each of E1 . . . Em, since each of E1 . . . Em

is parallel to Z . This means that R2 satisfies that J1(π) =
J1(π

′) =⇒ J2(π) = J2(π
′) for all π, π′ ∈ Π̂ if and only

if L2 is constant over Z .

If dim(Z) = D′ then there is a linear subspace with D−D′

dimensions, which contains the (D-dimensional) vector R⃗2

of any reward function R2 where J1(π) = J1(π
′) =⇒

J2(π) = J2(π
′) for π, π′ ∈ Π̂. This is because R2 is

constant over Z if and only if R⃗2 ·v = 0 for all v ∈ Z . Then
if Z contains D′ linearly independent vectors vi . . . vD′ ,
then the solutions to the corresponding system of linear
equations form a (D − D′) dimensional subspace of RD.
Call this space the equality-preserving space. Next, note
that R2 is trivial on Π̂ if and only if R⃗2 is the zero vector 0⃗.

Now we show that if the conditions are not satisfied, then
there is no non-trivial simplification. Suppose D′ ≥ D − 1,
and that R2 is a simplification of R1. Note that if R2

simplifies R1 then R⃗2 is in the equality-preserving space.
Now, if D′ = D then L2 (and L1) must be constant for all
points in RD, which implies that R2 (and R1) are trivial on
Π̂. Next, if D′ = D − 1 then the equality-preserving space

is one-dimensional. Note that we can always preserve all
equalities of R1 by scaling R1 by a constant factor. That
is, if R2 = c · R1 for some (possibly negative) c ∈ R then
J1(π) = J1(π

′) =⇒ J2(π) = J2(π
′) for all π, π′ ∈ Π̂.

This means that the parameter which corresponds to the
dimension of the equality-preserving space in this case must
be the scaling of R⃗2. However, the only simplification
of R1 that is obtainable by uniform scaling is the trivial
simplification. This means that if D′ ≥ D − 1 then R1 has
no non-trivial simplifications on Π̂.

For the other direction, suppose D′ ≤ D − 2. Note that
this implies that R1 is not trivial. Let R3 = −R1. Now
both R⃗1 and R⃗3 are located in the equality-preserving space.
Next, since the equality-preserving space has at least two
dimensions, this means that there is a continuous path from
R⃗1 to R⃗3 through the equality-preserving space that does
not pass the origin. Now, note that Ji(π) = F(π) · R⃗i

is continuous in R⃗i. This means that there, on the path
from R⃗1 to R⃗3 is a first vector R⃗2 such that F(π) · R⃗2 =

F(π′) · R⃗2 but F(π) · R⃗1 ̸= F(π′) · R⃗1 for some π, π′ ∈ Π̂.
Let R2 be a reward function corresponding to R⃗2. Since R⃗2

is not 0⃗, we have that R2 is not trivial on Π̂. Moreover, since
R⃗2 is in the equality-preserving space, and since F(π) ·
R⃗2 = F(π′) · R⃗2 but F(π) · R⃗1 ̸= F(π′) · R⃗1 for some
π, π′ ∈ Π̂, we have that R2 is a non-trivial simplification of
R1. Therefore, if D′ ≤ D− 2 then there exists a non-trivial
simplification of R1.

We have thus proven both directions, which completes the
proof.

Corollary 3. For any finite set of policies Π̂, any envi-
ronment, and any reward function R, if |Π̂| ≥ 2 and
J(π) ̸= J(π′) for all π, π′ ∈ Π̂, then there is a non-trivial
simplification of R.

Proof. Note that if Ei is a singleton set then Zi = {⃗0}.
Hence, if each Ei is a singleton set then dim(Z1∪· · ·∪Zm)
= 0. If Π̂ contains at least two π, π′, and J(π) ̸= J(π′),
then F(π) ̸= F(π′). This means that dim(F(Π̂)) ≥ 2.
Thus the conditions of Theorem 3 are satisfied.

C. Examples
In this section, we take a closer look at two previously-seen
examples: the two-state MDP \ R and the cleaning robot.

C.1. Two-state MDP \ R example

Let us explore in more detail the two-state system introduced
in the main text. We decsribe this infinite-horizon MDP \R
in Table 1.

We denote πij (i, j ∈ {0, 1}) the policy which takes action
i when in state 0 and action j when in state 1. This gives us

States S = {0, 1}
Actions A = {0, 1}
Dynamics T (s, a) = a for s ∈ S, a ∈ A

Initial state distribution Pr(start in s) = 0.5 for s ∈ S

Discount factor γ = 0.5

Table 1: The two-state MDP \ R in consideration.

four possible deterministic policies:

{π00, π01, π10, π11}.

There are 4! = 24 ways of ordering these policies with
strict inequalities. Arbitrarily setting π00 < π11 breaks a
symmetry and reduces the number of policy orderings to 12.
When a policy ordering can be derived from some reward
function R, we say that R represents it, and that the policy
ordering is representable. Of these 12 policy orderings
with strict inequalities, six are representable:

π00 < π01 < π10 < π11,

π00 < π01 < π11 < π10,

π00 < π10 < π01 < π11,

π01 < π00 < π11 < π10,

π10 < π00 < π01 < π11,

π10 < π00 < π11 < π01.

Simplification in this environment is nontrivial – given a
policy ordering, it is not obvious which strict inequalities
can be set to equalities such that there is a reward function
which represents the new ordering. Through a computa-
tional approach (see Section C.3) we find the following
representable orderings, each of which is a simplification of
one of the above strict orderings.

π00 = π01 < π11 < π10,

π00 = π10 < π01 < π11,

π00 < π01 = π10 < π11,

π01 < π00 = π11 < π10,

π10 < π00 = π11 < π01,

π00 < π01 < π10 = π11,

π10 < π00 < π01 = π11,

π00 = π01 = π10 = π11.

Furthermore, for this environment, we find that any reward
function which sets the value of three policies equal neces-
sarily forces the value of the fourth policy to be equal as
well.

C.2. Cleaning robot example

Recall the cleaning robot example in which a robot can
choose to clean a combination of three rooms, and receives
a nonnegative reward for each room cleaned. This setting
can be thought of as a single-step eight-armed bandit with
special reward structure.

C.2.1. GAMEABILITY

We begin our exploration of this environment with a state-
ment regarding exactly when two policies are gameable. In
fact, the proposition is slightly more general, extending to
an arbitrary (finite) number of rooms.

Proposition 3. Consider a cleaning robot which can clean
N different rooms, and identify each room with a unique
index in {1, . . . , N}. Cleaning room i gives reward r(i) ≥ 0.
Cleaning multiple rooms gives reward equal to the sum of
the rewards of the rooms cleaned. The value of a policy
πS which cleans a collection of rooms S is the sum of the
rewards corresponding to the rooms cleaned: J(πS) =∑

i∈S r(i). For room i, the true reward function assigns
a value rtrue(i), while the proxy reward function assigns
it reward rproxy(i). The proxy reward is gameable with
respect to the true reward if and only if there are two sets of
rooms S1, S2 such that

∑
i∈S1

rproxy(i) <
∑

i∈S2
rproxy(i)

and
∑

i∈S1
rtrue(i) >

∑
i∈S2

rtrue(i).

Proof. We show the two directions of the double implica-
tion.

⇐ Suppose there are two sets of rooms S1, S2 sat-
isfying

∑
i∈S1

rproxy(i) <
∑

i∈S2
rproxy(i) and∑

i∈S1
rtrue(i) >

∑
i∈S2

rtrue(i). The policies πSi
=

“clean exactly the rooms in Si” for i ∈ {1, 2} demon-
strate that rproxy, rtrue are gameable. To see this, remem-
ber that J(πS) =

∑
i∈S r(i). Combining this with the

premise immediately gives Jproxy(πS1
) < Jproxy(πS2

)
and Jtrue(πS1

) > Jtrue(πS2
).

⇒ If rproxy, rtrue are gameable, then there must be a pair
of policies π1, π2 such that Jproxy(π1) < Jproxy(π2)
and Jtrue(π1) > Jtrue(π2). Let S1 be the set of rooms
cleaned by π1 and S2 be the set of rooms cleaned by π2.
Again remembering that J(πS) =

∑
i∈S r(i) immedi-

ately gives us that
∑

i∈S1
rproxy(i) <

∑
i∈S2

rproxy(i)
and

∑
i∈S1

rtrue(i) >
∑

i∈S2
rtrue(i).

In the main text, we saw two intuitive ways of modifying
the reward function in the cleaning robot example: omitting
information and overlooking fine details. Unfortunately,
there is no obvious mapping of Proposition 3 onto simple
rules concerning how to safely omit information or overlook

fine details: it seems that one must resort to ensuring that
no two sets of rooms satisfy the conditions for gameability
described in the proposition.

C.2.2. SIMPLIFICATION

We now consider simplification in this environment. Since
we know the reward for cleaning each room is nonnegative,
there will be some structure underneath all the possible
orderings over the policies. This structure is shown in Figure
4: regardless of the value assigned to each room, a policy at
the tail of an arrow can only be at most as good as a policy
at the head of the arrow.

[0, 0, 0]

[0, 0, 1]

[0, 1, 0]

[1, 0, 0]

[0, 1, 1]

[1, 0, 1]

[1, 1, 0]

[1, 1, 1]

Figure 4: The structure underlying all possible policy order-
ings (assuming nonnegative room value). The policy at the
tail of the arrow is at most as good as the policy at the head
of the arrow.

If we decide to simplify an ordering by equating two policies
connected by an arrow, the structure of the reward calcula-
tion will force other policies to also be equated. Specifically,
if the equated policies differ only in position i, then all pairs
of policies which differ only in position i will also be set
equal.

For example, imagine we simplify the reward by saying we
don’t care if the attic is cleaned or not, so long as the other
two rooms are cleaned (recall that we named the rooms
Attic, Bedroom and Kitchen). This amounts to saying that
J([0, 1, 1]) = J([1, 1, 1]). Because the policy value func-
tion is of the form

J(π) = J([x, y, z]) = [x, y, z] · [r1, r2, r3]

where x, y, z ∈ {0, 1}, this simplification forces r1 = 0.
In turn, this implies that J([0, 0, 0]) = J([1, 0, 0]) and
J([0, 1, 0]) = J([1, 1, 0]). The new structure underlying
the ordering over policies is shown in Figure 5.

[X, 0, 0]
[X, 0, 1]

[X, 1, 0]
[X, 1, 1]

Figure 5: The updated ordering structure after equating
“clean all the rooms” and “clean all the rooms except the
attic”. X can take either value in {0, 1}.

An alternative way to think about simplification in this prob-
lem is by imagining policies as corners of a cube, and sim-

plification as flattening of the cube along one dimension –
simplification collapses this cube into a square.

C.3. Software repository

The software suite described in the paper (and used
to calculate the representable policy orderings and
simplifications of the two-state MDP \ R) can be
found at https://anonymous.4open.science/
r/simplified-reward-5130.

D. Ungameability Diagram
Consider a setting with three policies a, b, c. We allow all
possible orderings of the policies. In general, these order-
ings might not all be representable; a concrete case in which
they are is when a, b, c represent different deterministic poli-
cies in a 3-armed bandit.

We can represent all ungameable pairs of policy orderings
with an undirected graph, which we call an ungameabil-
ity diagram. This includes a node for every representable
ordering and edges connecting orderings which are ungame-
able. Figure 6 shows an ungameability diagram including
all possible orderings of the three policies a, b, c.

E. Simplification Diagram
We can also represent all possible simplifications using a
directed graph, which we call a simplification diagram.
This includes a node for every representable ordering and
edges pointing from orderings to their simplifications. Fig-
ure 7 presents a simplification diagram including all possible
orderings of three policies a, b, c.

We note that the simplification graph is a subgraph of the
ungameability graph. This will always be the case, since
simplification can never lead to gaming.

https://anonymous.4open.science/r/simplified-reward-5130
https://anonymous.4open.science/r/simplified-reward-5130

b < a = c

a < c < b
c < a = b

a = b = cc < b < a

a = b < c

c < a < b
a < b = c

b < c < a b < a < c

a < b < c

b = c < a

a = c < b

Figure 6: Illustration of the ungameable pairs of policy orderings when considering all possible orderings over three policies
a, b, c. Edges of the graph connect ungameable policy orderings.

a < b < c

a < b = c

a < c < b

a = b < c

a = b = c

a = c < b

b < a < c

b < a = c

b < c < a

b = c < a

c < a < b

c < a = b

c < b < a

Figure 7: Illustration of the simplifications present when considering all possible orderings over three policies a, b, c. Arrows
represent simplification: the policy ordering at the head of an arrow is a simplification of the policy ordering at the tail of the
arrow.

	Introduction
	Related Work
	Preliminaries and Definitions
	Results
	Infinite Policy Sets
	Finite Policy Sets

	Discussion
	Overview
	Proofs
	Non-trivial Ungameability Requires Restricting the Policy Set
	Finite Policy Sets

	Examples
	Two-state MDPR example
	Cleaning robot example
	Gameability
	Simplification

	Software repository

	Ungameability Diagram
	Simplification Diagram

