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Abstract

While recommender systems suffuse our daily
life, influencing information we receive, products
we purchase, and beliefs we form, few works have
systematically examined the safety of these sys-
tems. This can be partly attributed to the complex
feedback loops. In this work, we take a systems
safety perspective and focus on a particular feed-
back loop in recommender systems where users
react to recommendations they receive. We char-
acterize the difficulties of designing a safe rec-
ommender within this feedback loop. Further,
we connect the causes of widely covered recom-
mender system failures to flaws of the system in
treating the feedback loop. Our analysis suggests
lines of future work on designing safer recom-
mender systems and more broadly systems that
interact with people psychologically.

1. Introduction

Recommender systems are large-scale socio-technical sys-
tems that actively shape the information we receive, and
thus the beliefs we form and preferences we develop. De-
spite their prevalence and the potential long-lasting impact
they may have on individuals and the society, few works
have systematically examined the safety of recommender
systems. This may be for many reasons. To name a few,
examining the safety of any system requires deciding what
constitutes an accident or hazard. In the context of recom-
mender systems, these concepts have not been well-defined.
In addition, recommender systems have a complex nature
with multiple feedback loops involved. Content providers
create material to be distributed on social media platforms,
crafting content that will successfully find an audience. This
content will be distributed to users by a centralized rec-
ommendation algorithm and may be scrutinized further by
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Figure 1. In a control/feedback loop, the controller takes actions
and the controlled process provides feedback. As we discuss in
Section 2, the controller needs to maintain a process model that
captures the process it is controlling.

moderators. These users may provide feedback on the rec-
ommendations for example, by clicking, liking or flagging
them, which affects the recommendation algorithm, moder-
ation process, and eventually even the type of content which
becomes successful and popular.

In this work, we focus on a particular feedback loop in
the system, which we term as Recsys-User. Recsys-User
captures the interaction between the recommender system
(later referred to as algorithm) and an individual who con-
sumes the recommendations (later referred to as user). In
this feedback loop (Figure 1), the controller is the algorithm
that takes recommendations as its actions. The controlled
process that the controller operates on represents the user.
Finally, the feedback is provided by the user’s reaction to
the recommendations. Considering human agency and free
will, this language is not a perfect fit. We use it to evoke
the safety engineering literature, not as an endorsement
for the possibility or desirability of “mind control.” The
recommender-as-controller perspective centers the problem
of algorithm design. We note that it is also possible view
the user as the controller and the algorithm as the controlled
process. Though not our focus, such a perspective illumi-
nates issues related to user experience and recourse (Dean
et al., 2020).

We examine Recsys-User from a system safety perspec-
tive (Leveson, 2016) and illustrate how certain problems
with existing recommender systems can be traced back to
control flaws in Recsys-User. In Section 2, we introduce
the four conditions that are required to control any process.
We then provide a detailed discussion on the unique char-
acteristics of Recsys-User through these four conditions
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(Section 3). These characteristics make the design of a safe
controller in this setup hard. We analyze some existing is-
sues of recommender systems (that are presented in news
articles) through this perspective and connecting them to
potential control flaws in Recsys-User (Section 4). Finally,
we propose new research directions on developing safe rec-
ommender systems (Section 5).

2. Preliminaries

At the core of control engineering is the design of controllers
in a feedback loop. In the context of machine learning, rein-
forcement learning (RL) studies the algorithms for obtaining
optimal controllers under uncertainty. Our work uses con-
cepts from these subjects to examine recommender systems.
Below, we present the four conditions required to control a
process (Ashby, 1957; Leveson, 2016):

* Goal condition: The controller is required to have a goal,
which includes the objective as well as the safety con-
straints. This is in contrast to the goal in many existing
RL setups, where the condition is only specified by the
objective (i.e., reward) function.

* Action condition: The action condition specifies the ac-
tions that the controllers can take to affect the controlled
process.

* Model condition: The controller must possess a model
of the process it is controlling. As discussed in Leveson
(2016), the model condition is of great importance for a
controller, since it provides the current state of the con-
trolled process and will be used to estimate the effect of
different actions. The model that the controller maintains
is denoted by the process model (Figure 1).

* Observability condition: The controller requires feedback,
which is specified by the observability condition. The
feedback is limited by ways of observing (measuring,
assessing) the controlled process. In the language of par-
tially observable Markov decision processes (POMDPs),
this condition is specified by the observation function that
maps a full state to an observable state.

In the following, we will illustrate how these four conditions
exhibit in the Recsys-User loop.

3. Characteristics of the Recsys-User loop

To understand the difficulty of designing a controller in
the Recsys-User loop, we first need to understand how it
differs from control settings that we are more familiar with.
Putting it in a broader scope, depending on the nature of the
controlled process, we contrast feedback/control loops in
physical systems, where the controlled process is of physical

nature (e.g., a robot vacuum that controls the cleanliness
of the floor; a car in smart cruise control mode controls
the speed and lane position), with psychological systems,
where the controlled process is given by the behavior and
psychological state of a human (e.g., in Recsys-User, the
controlled process captures the preference of a user; for a
mental health chatbot, the controlled process reflects the
mental health of the user).

Physical systems are the focus of much of the control engi-
neering literature. The story is similar in machine learning,
with much of the RL literature focusing on physical sys-
tems. For example, in OpenAl gym (Brockman et al., 2016)
or other standard benchmark setups for testing RL algo-
rithms (Kaelbling et al., 1996; Lillicrap et al., 2015, and
references therein), the controlled process (environment)
simulates physical phenomena of the world.'

3.1. Physical and psychological systems

We compare physical and psychological systems in terms of
the four conditions required to control a process: the goal,
action, model and observability conditions (Table 1).

Goal Condition A key aspect of the goal condition is
safety constraints. For a physical system, the safety con-
straints are often well-defined, since there are existing reg-
ulations and clear definitions on accidents or hazards for
these systems. In the context of self-driving car, one clear
safety constraint for the system is avoiding collisions with
other cars. In contrast, for psychological systems, the safety
constraints are not well-specified due to the difficulty of
precisely defining what should be considered an accident or
hazard. Additionally, there are very few existing laws and
regulations on these systems that straightforwardly translate
into technical specifications. For example, in the context of
social media platform, while there are certain guidelines on
content moderation, existing laws do not offer constraints
on content curation (which is the main functionality of rec-
ommender systems) (Telecommunications Act of 1996).

Action Condition The nature of the actions taken by the
controller depends on the nature of the controlled process.
For example, in the context of autonomous driving car, the
actions (e.g., steering and acceleration) control the physical
condition of the car; in the context of content recommenda-
tion, the actions (the recommendations) control the infor-
mation (the content) presented to the user. While steering
has a clear effect on the trajectory of a car, the effect of
information presented in recommendations is more difficult
to define, especially if users interact with many different

'One exception is the large number of game environments,
though these ultimately have more in common with physical sys-
tems than psychological systems due to their well-defined goals
and determinism.



Engineering a Safer Recommender System

Physical Psychological
Goal Condition Well-defined Unclear safety constraints
Action Condition Controllable Less controllable

Model Condition

Observability Condition Partially observable

Informed by Physics, Estimable

Informed by behavioral sciences, Hard to estimate
Partially observable

Table 1. Differences between physical and psychological systems in terms of goal, action, model and observability condition.

sources of content. In general, the assessment of the action
condition (whether the action affects the controlled process)
relates closely to the observability condition (e.g., whether
the effect may be observed).

Model Condition Process models are maintained by the
controller for anticipating the evolution of the controlled
process. We discuss three important aspects: state definition,
dynamics definition, and dynamics estimation.

The ideal state captures the sufficient and necessary infor-
mation to control a process at a given time (analogous to
the full state in POMDPs). Due to our understanding of
physics, this state is well-defined for physical systems. It
may include the status of the controller (e.g., vacuum speed
and position) and the controlled process (e.g., cleanliness
and layout of the room). For psychological systems, it is
much more ambiguous. In the context of recommending an
article, consider the following questions: Is it sufficient to
know what the person desires at the moment? Do we need to
know their mood and long-term goal? The ambiguity of an
ideal state for psychological systems precludes assessment
on the quality of the estimated state, since the state that one
should aim to estimate is not well-defined in the first place.

The dynamics describe how the ideal state evolves over time,
given an initial state, actions, and external disturbances. The
ability to model dynamics a priori differs between physical
and psychological processes. The laws governing physi-
cal systems are generally well understood, from Newton’s
laws of motion to Maxwell’s equations. While approxima-
tions are made (e.g. rigid body mechanics ignore flexion),
the broad strokes can be correctly captured by tractable dy-
namics functions. More fundamentally, many controlled
physical processes are engineered, meaning that they can
designed and built such that these approximations remain
valid. Psychological processes are less understood, and it is
difficult to imagine that human behavior can be described
by computationally tractable functions. Furthermore, there
is likely considerable variability among people.

If the dynamics function cannot be fully modelled a priori, it
may still be possible to estimate it from data. The difficulty
of such a task for psychological systems stems from the un-
derying difficulty in specifying tractable models discussed
in the previous paragraph. If the dynamics were known

to have a linear form, for example, it would be possible to
estimate the parameters and make concrete guarantees about
accuracy. Though not all physical phenomena can be de-
scribed in terms of linear relationships, engineered systems
can be built such that linear (or other simple parametric)
approximations are valid. On the contrary, it is unclear what
assumptions are reasonable to impose on psychological pro-
cesses. Even in settings where the ideal state is well-defined
(e.g., what the user wants to read next), we do not know the
structure of the dynamics that one should use (e.g., whether
it is time-invariant or linear) and hence cannot assure that
the dynamics are estimable using data.

Observability Condition If a system is observable, then
the underlying state can be estimated from the observa-
tions. If a system is not observable, then there is a range
of possible states that the system could be in, meaning
that the observations so far cannot delineate which one
is true—and in particular cannot predict which path the
system might take moving forward. Observing a physical
process involves different measurement tools, i.e., sensors.
The number, placement, and precision of sensors is often
a design decision, so engineers can ensure adequate ob-
servability. On the contrary, for psychological systems, we
often only observe behavioral signals (e.g., revealed pref-
erences, whether a person has clicked on a recommenda-
tion or not) instead of underlying psychological quantities
(e.g., true preferences, happiness). Though there are many
surveys designed to assess the psychological state of a per-
son (e.g., Fordyce (1988); Lyubomirsky & Lepper (1999);
Tombaugh & Mclntyre (1992)), the precision of these ap-
proaches is not matched to the requirements of engineering
system analysis. Furthermore, there are not standardized
methods for estimating these psychological quantities from
behavioral signals. Crucially, this fact ensures that identify-
ing harms for psychological systems is much harder than
for physical systems.

3.2. Autopilot and Up-Next

To examine more closely how the differences between phys-
ical and psychological systems affect the design and safety
analysis of controllers in these systems, we discuss two il-
lustrative examples. We use autopilot, a physical system
that steers, accelerates and brakes a car automatically, and
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an instance of Recsys-User called Up-Next, a psychological
system that recommends the user content to read next.

In autopilot, the goal, action, model and observability con-
ditions are straightforward to specify. In particular, the
objective and the safety constraints are defined on observ-
able physical states—driving the car to the desired location
efficiently without violating any traffic laws. The process
model maintained by the controller can be based upon laws
of physics and refined using a large set of historical data. Ob-
servations of the feedback depend upon the sensors installed
on the vehicle.

For Up-Next, these conditions are ambiguous, making the
design of the controller much more difficult. For the goal
condition, the objective is rather clear—getting the user
to click on the recommended item—since it is defined on
observable behavioral signals (e.g., click or not click). How-
ever, the safety constraints are less well-defined, since they
likely involve unobservable psychological states—for exam-
ple, that the recommendation should not cause the the user
to become more depressed. For the model condition, the
recommender system may maintain a black-box model for
predicting the user’s behaviors. Such models may never be
fully accurate due to unmeasured external factors (e.g., pick-
ing up a new hobby changes viewing habits), but they may
be sufficient for the goal of gaining more clicks. One might
argue this is why modern recommender systems “work.” On
the other hand, accounting for safety constraints requires
the estimation of latent psychological states, for which we
do not have well-established methods and guarantees. Fi-
nally, the observability condition for the controller depends
upon the feedback channels provided to the users. In cur-
rent recommender systems, the feedback is often implicit
(e.g., user’s watch time of a recommendation) rather than ex-
plicit (e.g., user’s direct indication on preference towards the
recommendations), and is not sufficient to estimate latent
psychological states.

4. Categorization of causes of safety issues

We now use the process control perspective on the Recsys-
User feedback loop to categorize failures in real-world rec-
ommendation systems. This is a prelimary analysis meant
to illustrate the utility of the framework. We draw examples
of real-world failures from news coverage.

MSI and toxicity Facebook overhauled its newsfeed algo-
rithm in 2018, introducing a Meaningful Social Interactions
(MSI) metric to give higher priority to posts with long com-
ments. Though publicized as a change to increase the health
of conversations on the platform, a Wall Street Journal in-
vestigation uncovered internal reports confirming that the
change increased toxicity and divisiveness (Hagey & Hor-
witz, 2021). This failure can be understood at the level of
the process model: a failure to anticipate that upranking

posts with long comments would lead to anger and toxic-
ity. It’s plausible that when the metric was in development,
long comments were not strongly correlated with negative
content, and only after deployment was the correlation am-
plified by human behavior. An additional dynamic arises
from the incentive structure for content creators; in an email
the BuzzFeed CEO cited a “pressure to make bad content or
underperform.” More than just amplify toxic content, this
changed may have led to the creation of more of it.

YouTube Kids Bridle (2017) published an investigation
of disturbing videos on YouTube Kids, including violent and
sexual content. To fix this issue, the company switched from
passive moderation of flagged content to a proactive stance,
relying on pre-approved content creators (Koh, 2022). The
passive approach failed because of inadequate feedback:
young children may not realize a video is disturbing or have
the ability to react, so low quality videos may not receive
proportionally lower watchtime, and inapropriate content
may not be flagged for moderation until a supervising adult
intervenes.

Discriminatory ad delivery Ali et al. (2019) demon-
strated that employment and housing ad delivery on Face-
book was biased along racial and gender lines. This bias
was due both to complex bidding markets and Facebook’s
own relevance predictions. Discrimination on the basis of
race and sex in housing and employment is illegal under
U.S. federal law. Setting aside the market complexities and
focusing on relevance targeting, there is an immediate disso-
nance between presenting ads equally across demographic
categories and choosing to target individuals most likely to
click. Thus a mismatch between existing regulations and
the goal condition led to this failure.

5. Future Directions

Engineering safe recommender systems will require mul-
tidisciplinary efforts. Building on the system safety per-
spective, we present some future directions. First, the goal
condition: In order to define safety constraints for recom-
mender systems, we need to decide what constitutes as haz-
ards. This requires normative discussions among ethicists,
system designers, users and law makers. Second, the model
condition: We need to better understand and estimate the
latent psychological process of individuals. One component
is the creation of detailed datasets on individuals’ (psycho-
logical) experiences when interacting with these systems.
Another component is developing machine learning meth-
ods for estimating sophisticated (possibly nonlinear) latent
space models and designing safe RL algorithms operating in
POMDPs. Third, the observability condition: Users should
be provided with more channels for providing feedback. De-
signing and testing these new feedback mechanisms require
collaboration between industry and academia.
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