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Abstract
Supervised learning models are increasingly used
in algorithmic decision-making. The traditional
assumption on the training and testing data be-
ing independently and identically distributed is
often violated in practical learning settings, due
to distribution shifts. To mitigate the effects of
such nonstationarities, risk-sensitive learning is
proposed to train models under different (risk)
functionals beyond the expected loss. For exam-
ple, learning under the conditional value-at-risk of
the losses is equivalent to training a model under
a particular type of worst-case distribution shift.
While many risk functionals and learning proce-
dures have been proposed, their implementations
are either nonexistent or in individualized repos-
itories. With no common implementations and
baseline test beds, it is difficult to decide which
risk functionals and learning procedures to use.
To address this, we introduce a library (RiskyZoo)
for risk-sensitive supervised learning. The library
contains implementations of risk-sensitive learn-
ing objectives and optimization procedures that
can be used as add-ons to the PyTorch library. We
also provide datasets to compare these learning
methods. We demonstrate usage of our library
through comparing models learned under differ-
ent risk objectives, optimization performances of
different methods for a single objective, and risk
assessments of pretrained ImageNet models.

1. Introduction
Predictions made by supervised learning models assist re-
sponsible decision making in a variety of domains, in-
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cluding healthcare (Patel et al., 2019; Rajpurkar et al.,
2020; Tschandl et al., 2020; Bien et al., 2018), credit lend-
ing (Bussmann et al., 2021; Kruppa et al., 2013), and em-
ployment (Raghavan et al., 2020; Hoffman et al., 2017). In
credit lending, for example, decisions to grant loans take
into account the predicted risk of the applicant defaulting.

Traditionally, these supervised learning models are trained
to minimize the average loss, which may result in undesir-
able model behavior in two ways. First, training methods
may fail to account for real-world dynamics, such as dis-
tribution shift between training data and the deployment
environment. Consequently, the model that minimizes the
training average loss may differ from the one that minimizes
the test average loss. Second, the average loss may be poorly
aligned with real-world desiderata, such as robustness or
risk aversion. For example, in finance, international banking
law requires financial institutions to evaluate their mod-
els (BCBS, 2013) in terms of the conditional value-at-risk
(CVaR), a risk-averse functional.

Recognizing that optimization of the average loss fails to
address these real-world dynamics and desiderata, a plethora
of risk-sensitive supervised learning works instead optimize
other risk functionals of the loss (Duchi & Namkoong, 2018;
Duchi et al., 2020; Leqi et al., 2019; Li et al., 2020; Khim
et al., 2020; Lee et al., 2020). These functionals produce
models that align with the risk preferences of the decision
maker and possess responsible decision making properties
such as robustness to distribution shifts and noisy labels.

Existing risk-sensitive learning literature has proposed opti-
mization methods for a diversity of risk functionals. How-
ever, these methods are implemented in individualized repos-
itories under different structures, often for a single risk func-
tional and application at a time. As a result, it is difficult
for researchers to compare the effects of optimizing differ-
ent risks, or to compare different optimization methods for
the same risk, on problems of interest. This hinders stud-
ies on providing guidelines for choosing the desirable risk
functional under different setups.

In light of this, we introduce a library for risk-sensitive
supervised learning (RiskyZoo1) that contains implementa-
tions of a comprehensive set of risk functionals, optimiza-

1Library code is sourced at github.com/w07wong/RiskyZoo.

https://github.com/w07wong/RiskyZoo
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tion procedures, and datasets. The library design enables
one to easily adjust a traditional supervised learning training
pipeline in PyTorch to perform risk-sensitive learning. To
demonstrate the usage of our library, we conduct a study on
comparing models learned through different risk functionals
under various distribution shifts. These experiments demon-
strate that even if the learning objective is to minimize the
expected test loss, the choice of risk functional (during train-
ing time) depends on the learning setup (e.g., the type of
distribution shifts between training and testing data).

2. Risk-Sensitive Supervised Learning
Risk-sensitive supervised learning, in contrast to traditional
supervised learning, is built to minimize not just the ex-
pected loss but other functionals of the loss.

Notation Given training data {Xi, Yi}ni=1 independently
and identically drawn from a training data distribution
Ptrain(X,Y ) where X ∈ X and Y ∈ Y , a loss function
ℓ : Y × Y → R, a risk functional ρ that maps a random
variable to a real value, and a hypothesis class F , we aim to
find

f⋆(ρ,Ptrain) ∈ min
f∈F

ρ(ℓf (X,Y )),

where ℓf (X,Y ) := ℓ(f(X), Y ) is the loss random variable
under model f . We use Ff (ℓf (X,Y )) to denote the CDF
of ℓf (X,Y ). In the traditional supervised learning setting,
the risk functional is the expected value, i.e., ρ = E. We use
f⋆(ρ,Ptrain) to emphasize that the model is learned under
functional ρ and data from Ptrain. When context is clear, we
may omit the arguments and use f⋆. At test time, the data
are sampled from Ptest, which may deviate from Ptrain.

2.1. Risk Functionals

Below we describe common risk functionals utilized in
machine learning literature and applications, and summarize
their related works in Table 2 (Appendix A).

Expected Value ρE(ℓf (X,Y )) = E[ℓf (X,Y )] is the learn-
ing objective in traditional supervised learning.

CVaR ρCVaR,α(ℓf (X,Y )) = E[ℓf (X,Y )|ℓf (X,Y ) ≥
VaRα(ℓf (X,Y ))] where α ∈ [0, 1] and VaRα is the 100×α-
percentile of the losses. CVaR quantifies the expected value
of losses that exceed VaRα.

Entropic Risk ρEnt, t(ℓf (X,Y )) = 1
t logE[e

tℓf (X,Y )]. As
t → ∞, the entropic risk focuses on minimizing tail losses.
As t → −∞, the entropic risk ignores outliers in the data.

Human-aligned Risk ρH, a,b(ℓf (X,Y )) = E[ℓf (X,Y )
w(Ff (ℓf (X,Y )))] where w(t) = 3−3b

a2−a+1 (3t2 − 2(a +
1)t+ a) + 1 is a weighting function inspired by cumulative
prospective theory that overweights extreme losses.

Inverted CVaR ρCVaR,α(ℓf (X,Y )) = E[ℓf (X,Y )|
ℓf (X,Y ) ≤ VaRα(ℓf (X,Y ))], where α ∈ [0, 1]. Inverted
CVaR quantifies the expected value of losses below VaRα.

Mean-Variance ρMV, c(ℓf (X,Y )) = E[ℓf (X,Y )] + c ·
Variance[ℓf (X,Y )].

Trimmed Risk ρTrim,c(ℓf (X,Y )) = E[ℓf (X,Y )|
Ff (ℓf (X,Y )) ∈ [α, 1− α]], where α ∈ [0, 0.5). Trimmed
risk ignores extreme (high and low) losses.

2.2. Algorithmic Properties

Distribution shifts, i.e. Ptrain(X,Y ) ̸= Ptest(X,Y ), occur
in many real-world settings. Below, we summarize exist-
ing literatures that use risk-sensitive learning to deal with
different types of distribution shifts. In other words, these
risk-sensitive models f⋆(ρ,Ptrain) are close to f⋆(E,Ptest)
(which we call algorithmic properties).

General distribution shift: Ptrain(X,Y ) ̸= Ptest(X,Y ).
Duchi & Namkoong (2018) provides a distributionally ro-
bust optimization (DRO) method for dealing with generic
distribution shifts and connects f⋆(ρCVaR,Ptrain) with the
model under a particular type of worst case shift.

Covariate Shift: Ptrain(X) ̸= Ptest(X) but Ptrain(Y |X) =
Ptest(Y |X). In Fan et al. (2017), ρCVaR is proposed to deal
with class imbalance at training time but balanced classes at
test time.

Label Shift: Ptrain(Y ) ̸= Ptest(Y ) while Ptrain(X|Y ) =
Ptest(X|Y ). Garg et al. (2021) proposes to use inverted
CVaR as the learning objective and show that under certain
settings f⋆(ρCVaR,Ptrain) = f⋆(E,Ptest). We note that a
particular type of label shift is noisy labels where Ptrain(Y )
is a mixture of Ptest(Y ) and the uniform distribution.

In addition to the aforementioned distribution shifts, risk
sensitive learning has also been used in treating outliers and
heavy tails in the training distribution, e.g., using trimmed
risk (Tukey & McLaughlin, 1963).

3. RiskyZoo
Our library (RiskyZoo) provides a general framework for
learning and assessing models under different risk function-
als. RiskyZoo is built upon PyTorch and consists of three
modules: (i) Risk Functionals, (ii) Optimizers, and (iii)
Datasets (Figure 1). The modular design of RiskyZoo al-
lows it to be easily integrated into existing PyTorch pipelines
for tasks such as image classification, risk prediction, etc.

Module: Risk Functionals Risk functionals can serve
as both the training objectives for learning a model and
evalaution metrics for assessing the performance of a model.
RiskyZoo implements all risk functionals mentioned in Sec-
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Figure 1. RiskyZoo consists of three modules that can be plugged in individually into existing PyTorch pipelines.

tion 2.1. Each risk functional takes in an array of losses for
the model and outputs the risks for the model by applying
the risk function on the empirical CDF of the losses (Leqi
et al., 2022). In cases for expected value, the output is the
same as the average loss. Users can specify customizable
parameters for the functional. For example, for CVaR, the
user can specify its parameter α.

Module: Optimizers The library’s standard optimization
procedures are first-order methods (Leqi et al., 2022). That
is, one may use standard first-order optimizers provided in
PyTorch to minimize the risks since our implementations of
risk functionals are differentiable. In contrast to other risks,
CVaR has many proposed specialized optimization meth-
ods: TruncCVaR (Curi et al., 2020), Soft-CVaR (Curi et al.,
2020), an adaptive sampling method (Curi et al., 2020), and
two distributionally robust optimization methods (Duchi &
Namkoong, 2018; Duchi et al., 2020). Further details and a
comparison of CVaR optimizers are detailed in Appendix C.
RiskyZoo contains implementations of all aforementioned
CVaR optimization methods. These optimization methods
can be used in existing PyTorch training pipelines with
minimal modifications. For example, users may replace
optimizers such as SGD or Adam with one of the CVaR
optimizers. We note that the usage of these optimizers is
similar to a PyTorch optimizer, since these optimizers have a
function (zero grad) to zero out the gradients and a function
(step) to take an optimization step.

Module: Datasets To compare the behavior of models
learned under different risk functionals and understand the
trade-offs of the risk functionals, we create standardized
datasets for risk-sensitive learning. Existing risk-sensitive
learning works often test the proposed methods on different
datasets, making it hard to interpret the results. For better
reproducibility, the dataset module is designed to test (and
compare) the algorithmic properties of different risk func-

tionals. Specifically, it contains five datasets for settings
including covariate shift, label shift (noisy labels), and out-
liers. We plan to add more large-scale datasets for these
settings in the future. Details of the datasets and demonstra-
tions of usage are presented in Section 4.1.

4. RiskyZoo In Action
In the following, we illustrate the usage of RiskyZoo through
two angles: (i) Risk assessment: assessing learned models
through different risk functionals; and (ii) Risk-sensitive
learning: training risk-sensitive models and comparing
them.

Risk assessment is the task of evaluating learned models
through multiple perspectives, including inspecting the train
and test loss distributions of a given model (Appendix B)
and assessing the train and test risks in terms of different risk
functionals. Each risk captures some aspects of the model.
CVaR, by focusing on the losses that exceed some threshold,
quantifies the upper tail performance of a model. Inverted
CVaR on the other hand, exposes how well a model performs
on its best data points. Trimmed risk gives a more robust
estimate of the mean performance. Human-aligned risk is
the opposite of trimmed risk, focusing more on both tail
ends of performance. Mean-variance includes the variance
of losses. Entropic risk assesses a model’s performance
against outliers. We perform risk assessments of all learned
models and pretrained ImageNet models below.

For risk-sensitive learning, we use datasets provided in
RiskyZoo to compare the algorithmic properties of different
risk functionals, and train risk-sensitive CIFAR-10 models
under noisy labels.

4.1. Risk-Sensitive Learning on the Dataset Module

We provide usage examples of RiskyZoo’s Datasets mod-
ule (Section 3) for comparing the algorithmic properties of
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Model Accuracy ρE ρCVaR,α=0.05 ρEnt,t=−1 ρH,a=0.4,b=0.3 ρCVaR,α=0.95 ρMV,c=1 ρTrim,α=0.05

GoogLeNet 0.70 1.28 1.35 0.60 2.04 1.00 4.38 1.06
Inception 0.70 1.83 1.92 0.39 3.51 1.22 14.42 1.29
ResNet-18 0.70 1.25 1.31 0.50 2.15 0.91 5.35 0.96
ShuffleNet 0.69 1.36 1.43 0.46 2.42 0.97 6.72 1.03
VGG-11 0.69 1.26 1.33 0.52 2.13 0.93 5.21 0.98

Table 1. Risk Assessment of ImageNet Models. Validation accuracy and the risk-sensitive performance of each model.

different risk functionals. These experiments showcase that
even if one aims to obtain a model that performs well in
expectation at test time, depending on the setups, different
risk functionals should be chosen as the learning objective
at training time. Full experimental details and results can be
found in Appendix B.

Noisy Labels To illustrate robustness to noisy labels, we
explore two settings: when the training labels are corrupted,
and when both the training and test labels are corrupted.
We apply noise by randomly sampling 20%, 30%, 40%, and
80% of the data and flipping labels. Full details and results
can be found in Appendices B.1 and B.2. As seen in Table 5,
when only the training labels are corrupted, trimmed risk
and entropic risk achieve the lowest average test loss.

Covariate Shift We explore a covariate shift setting de-
scribed in Appendix B.3. Visualized in Figure 11, the
dataset contains one majority class (green) with 2000 points
and a minority class (blue) with 400 points. We represent a
covariate shift with the training set containing more minority
class data points but the test set following the original data
distribution. Summarized in Table 10, CVaR, compared to
expected loss, achieves 3× greater test accuracy, 2× smaller
average test loss, and 2.75× lower test CVaR.

Minority Group Performance Under nonuniform distri-
butions, we still wish to achieve similar performance for
all subpopulations. We follow the setup from Duchi &
Namkoong (2018); Leqi et al. (2019). In addition to risk
assessment, we quantify model performance under majority
and minority risk achieved. Full details are found in Ap-
pendix B.4. Shown in Table 11, CVaR achieves the lowest
minority risk by focusing on minimizing the loss for the
worst α = 0.1 percentile of losses. However, this leads to
the greatest majority risk. Entropic risk, human-aligned risk,
and mean-variance also achieve lower minority risks than
expected loss, but achieve lower majority risks than CVaR.

Label Shift We follow the same setup as the Minority
Group Performance dataset but apply a label shift to the
test data. Label shift details and results are summarized
in Appendix B.5. We find that inverted CVaR, entropic
risk, and trimmed risk outperform expected loss on all test
metrics except mean-variance (Table 13).

4.2. Large Scale Examples

We demonstrate usage of our library on larger tasks.

ImageNet: Risk Assessment Model performance is fre-
quently quantified using accuracy or mean squared error.
However, models which achieve similar accuracies may
perform differently under risk notions. To demonstrate
this, we conduct risk assessments of pretrained PyTorch
ImageNet classifiers on the ImageNet validation set (Rus-
sakovsky et al., 2015). We select models with similar val-
idation accuracies: GoogLeNet (Szegedy et al., 2015), In-
ception (Szegedy et al., 2016), ResNet-18 (He et al., 2016),
ShuffleNet (Ma et al., 2018), and VGG-11 (Simonyan & Zis-
serman, 2014). Results are summarized in Table 1. Despite
similar accuracies, tail performances of the loss distribu-
tions of the models differ. For example, Inception has over
2× higher mean-variance and 1.3× greater CVaR than other
models. In situations where worst-case performance and
predictability is important, Inception may not be as well
suited as other models.

CIFAR-10: Learning under Noisy Labels We replicate
the robust classification setup in Jiang et al. (2018); Li et al.
(2020). We take the CIFAR-10 dataset and uniformly at
random corrupt 80% of the training labels. The test set
remains clean. The performance of the VGG-11 models
learned under different risk functionals are are summarized
in Appendix D. As a sanity check, in our experiment, among
all learned models, the one trained with a particular risk
functional minimizes that objective under the training data
(Table 15). At test time (when there is clean data), the model
learned under entropic risk produces 5% greater accuracy
than the model trained with the expected loss (Table 16).

5. Conclusion and Future Work
We present Risky Zoo, a risk-sensitive supervised learning
library which provides implementations of a comprehensive
list of risk functionals, their optimization procedures, and
datasets for inspecting their algorithmic properties. For
future work, we will explore real-world applications, such
as finance, which require risk-averse or risk-seeking models.
We also plan to extend the library to support risk-sensitive
reinforcement learning.
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A. Discussion on Risk Functionals
Below is a table that summarizes existing supervised learning works that cover these risk functionals.

Objective Related Works

CVaR Duchi & Namkoong (2018); Duchi et al. (2020); Khim et al. (2020); Lee et al. (2020)
Entropic Risk Li et al. (2020); Lee et al. (2020)
Human-Aligned Risk Leqi et al. (2019)
Inverted CVaR Lee et al. (2020); Garg et al. (2021)
Mean-Variance Lee et al. (2020)
Trimmed Risk Tukey & McLaughlin (1963); Khim et al. (2020)

Table 2. Risk-sensitive objectives and their related works.

B. Risk-Sensitive Learning on the Dataset Module
We compare the performance of the risk-sensitive objectives described in Section 2.1 against expected loss. In the sections
below, we describe the datasets and present experimental results on the datasets contained in the RiskyZoo Dataset module.
We train logistic regression classifiers using full batch gradient descent with learning rate 1e-2 and no momentum. Models
are trained till convergence which we define as when the current risk is within the average of the past 5 risks by 1e-4. We
use cross entropy loss for classification and mean squared error for regression. For classification, if the number of training
iterations exceed 3000, we stop training. For regression, we set the iteration limit to 5000. Training and testing use a 70:30
dataset train-test split unless stated otherwise.

B.1. Classification: Noisy Labels, Label Shift

We replicate a scenario where training data is corrupted from Jiang et al. (2018); Li et al. (2020). We simulate a label shift
with the test labels remaining clean. There are two classes of data drawn from 2D Gaussian distributions N (0, 0.16) and
N (1, 0.16). We draw 2000 training data points and 2000 test data points. Given some overall noise level K, we distribute
the noise non-uniformly: one class has 0.7 ∗ K noise and the other has 0.3 ∗ K noise. Noise is applied by flipping the
labels for each class. We evaluate the accuracy and performance under each risk functional for K = 0.2, 0.3, 0.4, and 0.8.
Visualizations of the data are shown in Figure 2. For CVaR, inverted CVaR, and trimmed risk, we choose α values to study
the effects of optimizing using the worst α percentile of losses, best α percentile of losses, and discarding both the highest
and lowest α percentile of losses respectively. Train and test accuracies of models learned under each risk-sensitive objective
are shown in Table 3.

No Noise 20% Noise 30% Noise 40% Noise 80% Noise

Figure 2. Noisy labels classification datasets with varying level of noise K.

Aside from CVaR, all other objectives achieve similar performance across all noise levels. Data points whose labels are
flipped lie on the wrong side of the decision boundary. As a result, they can incur high losses. CVaR, by focusing on high
loss data points is uncertain where the decision boundary is and produces prediction probabilities close to uniform. Decision
boundaries are illustrated in Figure 3.

Risk assessment of models are summarized in Table 4 and Table 5 respectively. Models optimizing for a risk functional
during training minimizes that objective during training time. Under the test data, the better a model’s decision boundary,
the better it performs under all risk notions.
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The train and test loss distributions are illustrated in Figures 4 and 5. Although CVaR has a shorter tail than all other risk
functionals, its losses are concentrated around a higher value. Inverted CVaR and trimmed risk exhibit longer, albeit short,
tails due to the objectives ignoring samples with high losses.

Finally, we compare the average number of training epochs each risk functional takes till convergence in Figure 6. Mean-
variance requires the least number of epochs on average across all levels of noise. Trimmed risk and inverted CVaR require
more epochs but achieve better performance.

Objective Parameters 20% Noise 30% Noise 40% Noise 80% Noise

Train Test Train Test Train Test Train Test

Expected Loss - 0.87 0.95 0.83 0.95 0.78 0.94 0.64 0.78
CVaR α = 0.3 0.83 0.91 0.61 0.62 0.56 0.59 0.50 0.56
Entropic Risk t = −0.5 0.87 0.95 0.83 0.95 0.79 0.95 0.64 0.78
Human-Aligned Risk a = 0.4, b = 0.8 0.87 0.95 0.82 0.95 0.78 0.93 0.63 0.76
Inverted CVaR α = 0.7 0.83 0.91 0.80 0.92 0.77 0.94 0.63 0.77
Mean-Variance c = 1 0.86 0.95 0.82 0.94 0.78 0.93 0.64 0.78
Trimmed Risk α = 0.3 0.85 0.94 0.82 0.95 0.78 0.95 0.64 0.77

Table 3. Classification: Noisy Labels, Label Shift. Train and test accuracies for varying levels of noise when only the training data is
corrupted with noisy labels. CVaR, by focusing on high loss data points around the decision boundary, suffers from a uniform prediction
model and lower accuracies.

B.2. Classification: Noisy Labels, No Label Shift

This study replicates the Classification: Noisy Labels, Label Shift except both training and test labels are corrupted. The
same amount of noise is applied to the training and test datasets.

Train and test accuracies of models are listed in Table 6. Decision boundaries are illustrated in Figure 7. Train and test
performances under each risk functional are listed in Tables 7 and 8. Loss distributions are illustrated in Figures 8 and 9.
Optimizing under an objective produces a model that performs well on that objective under the training data. However,
test performance is tied to the accuracy of the learned decision boundary. In this case, the tighter the boundary, the better
performance a model achieves under all the risk functionals. Trimmed risk and inverted CVaR produce the most confident
decision boundaries while the CVaR model has close to uniform class probabilities for the data points. As a result, trimmed
risk and inverted CVaR achieve better risk-sensitive metrics compared to CVaR. The average number of training epochs
till convergence is shown in Figure 10. Similar to the Classification: Noisy Labels, Label Shift example, trimmed risk and
inverted CVaR require more epochs for convergence.

B.3. Classification: Covariate Shift

We explore covariate shift by drawing data from an XOR distribution created by four Gaussians with standard deviations of
0.4. Two classes are created: a majority class (green) containing 2000 data points and a minority class (blue) containing 400
samples (Figure 11). We randomly sub-sample the majority class in the training set to obtain a new dataset with a 10%/90%
class imbalance with the majority and minority classes swapped. The test set distribution remains unchanged. While a
model minimizing expected loss can achieve low risk on the training set, it performs poorly on the training minority class.
Consequently at test time, the model will perform poorly on the original majority class.

Results on the training set are summarized in Table 9. The model trained with expected loss achieves low risk, but has a CVaR
over 2× greater than the models minimizing CVaR, entropic risk, and mean-variance. Results on the test set are summarized
in Table 10. CVaR achieves the highest accuracy and lowest average loss. For large values of c, mean-variance performs
similarly. By heavily penalizing variance, the mean-variance model may be forced to achieve relatively uniform performance
on both the majority and minority classes. Decision boundaries, train loss distributions, and test loss distributions are shown
in Figure 13. The average number of training epochs is summarized in Figure 12.
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Objective 20% Noise 30% Noise 40% Noise 80% Noise

Expected Loss

CVaR

Entropic Risk

Human-Aligned Risk

Inverted CVaR

Mean-Variance

Trimmed Risk

Figure 3. Classification: Noisy Labels, Label Shift. The decision boundaries of models learned under each objective and different levels
of noise. The color bar indicates the predicted likelihood of each class: blue means higher probability of the blue class, and green means
higher probability of the green class. The less uniform the decision boundary, the lower average loss a model has for this dataset. CVaR
incurs high average loss due to its uncertainty across all points.
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Training Objective Noise Expected CVaR Entropic Human Inv CVaR MV Trimmed

Expected Loss 0.2 0.41 0.87 0.37 0.46 0.19 0.86 0.23
CVaR 0.2 0.67 0.70 0.66 0.67 0.59 0.69 0.63
Entropic Risk 0.2 0.40 1.00 0.33 0.47 0.12 1.21 0.17
Human-Aligned Risk 0.2 0.44 0.83 0.41 0.48 0.24 0.75 0.28
Inverted CVaR 0.2 0.49 1.42 0.35 0.61 0.08 2.37 0.13
Mean-Variance 0.2 0.51 0.76 0.50 0.53 0.36 0.65 0.38
Trimmed Risk 0.2 0.47 1.41 0.31 0.60 0.06 2.66 0.09

Expected Loss 0.3 0.48 0.95 0.45 0.53 0.25 0.88 0.30
CVaR 0.3 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.3 0.47 1.14 0.40 0.54 0.16 1.28 0.21
Human-Aligned Risk 0.3 0.51 0.88 0.48 0.54 0.31 0.76 0.35
Inverted CVaR 0.3 0.58 1.70 0.39 0.72 0.09 2.94 0.14
Mean-Variance 0.3 0.56 0.80 0.55 0.58 0.42 0.68 0.44
Trimmed Risk 0.3 0.58 1.76 0.37 0.73 0.06 3.37 0.10

Expected Loss 0.4 0.54 0.98 0.51 0.58 0.31 0.85 0.35
CVaR 0.4 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.4 0.52 1.19 0.46 0.59 0.21 1.19 0.26
Human-Aligned Risk 0.4 0.56 0.90 0.54 0.58 0.37 0.76 0.40
Inverted CVaR 0.4 0.66 1.95 0.44 0.81 0.10 3.27 0.15
Mean-Variance 0.4 0.60 0.81 0.59 0.61 0.46 0.70 0.49
Trimmed Risk 0.4 0.68 2.08 0.43 0.85 0.07 3.84 0.11

Expected Loss 0.8 0.64 0.91 0.63 0.66 0.48 0.78 0.52
CVaR 0.8 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.8 0.63 1.02 0.61 0.66 0.42 0.87 0.48
Human-Aligned Risk 0.8 0.65 0.86 0.65 0.67 0.52 0.75 0.55
Inverted CVaR 0.8 0.95 2.54 0.68 1.09 0.23 3.43 0.36
Mean-Variance 0.8 0.66 0.79 0.66 0.67 0.56 0.72 0.59
Trimmed Risk 0.8 0.86 2.24 0.64 0.98 0.23 2.90 0.34

Table 4. Classification: Noisy Labels, Label Shift. Comparison of train performances under each risk functional of models learned
under different training objectives. The rows represent the model learned under each training objective. The columns represent the
model’s performance under each risk functional with the same parameters used during training. We observe that optimizing for a risk
functional improves performance for that objective under the training data distribution.
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Training Objective Noise Expected CVaR Entropic Human Inv CVaR MV Trimmed

Expected Loss 0.2 0.30 0.53 0.29 0.32 0.18 0.39 0.21
CVaR 0.2 0.66 0.68 0.66 0.66 0.59 0.68 0.63
Entropic Risk 0.2 0.23 0.48 0.22 0.26 0.11 0.35 0.14
Human-Aligned Risk 0.2 0.35 0.56 0.34 0.36 0.23 0.43 0.26
Inverted CVaR 0.2 0.24 0.63 0.21 0.28 0.06 0.53 0.09
Mean-Variance 0.2 0.45 0.61 0.45 0.46 0.35 0.51 0.37
Trimmed Risk 0.2 0.19 0.51 0.17 0.22 0.04 0.42 0.07

Expected Loss 0.3 0.35 0.56 0.34 0.36 0.23 0.43 0.27
CVaR 0.3 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.3 0.26 0.50 0.25 0.28 0.14 0.36 0.17
Human-Aligned Risk 0.3 0.41 0.60 0.40 0.42 0.29 0.47 0.32
Inverted CVaR 0.3 0.22 0.57 0.20 0.26 0.06 0.47 0.09
Mean-Variance 0.3 0.50 0.64 0.50 0.51 0.40 0.55 0.42
Trimmed Risk 0.3 0.17 0.47 0.16 0.21 0.04 0.37 0.06

Expected Loss 0.4 0.40 0.59 0.39 0.41 0.28 0.47 0.31
CVaR 0.4 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.4 0.30 0.53 0.29 0.32 0.18 0.39 0.21
Human-Aligned Risk 0.4 0.46 0.63 0.45 0.47 0.34 0.52 0.37
Inverted CVaR 0.4 0.20 0.51 0.18 0.23 0.06 0.40 0.09
Mean-Variance 0.4 0.54 0.66 0.53 0.54 0.44 0.58 0.47
Trimmed Risk 0.4 0.16 0.43 0.15 0.19 0.04 0.33 0.06

Expected Loss 0.8 0.57 0.75 0.56 0.58 0.44 0.64 0.48
CVaR 0.8 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.8 0.52 0.77 0.51 0.53 0.37 0.62 0.41
Human-Aligned Risk 0.8 0.60 0.75 0.59 0.61 0.49 0.65 0.52
Inverted CVaR 0.8 0.67 1.40 0.53 0.72 0.31 1.63 0.47
Mean-Variance 0.8 0.63 0.72 0.62 0.63 0.54 0.66 0.57
Trimmed Risk 0.8 0.48 0.97 0.43 0.52 0.24 0.88 0.35

Table 5. Classification: Noisy Labels, Label Shift. Comparison of test performances under each risk functional of models learned under
different training objectives. The rows represent the model learned under each training objective. The columns represent the model’s
performance under each risk functional with the same parameters used during training. Entropic risk, inverted CVaR, and trimmed risk are
better at ignoring noisy labels during training time than expected loss. As a result, those former risk functionals induce models which
achieve lower average loss (besides inverted CVaR with 80% noise) on a non-corrupted test dataset.

Objective Parameters 20% Noise 30% Noise 40% Noise 80% Noise

Train Test Train Test Train Test Train Test

Expected Loss - 0.87 0.87 0.83 0.83 0.79 0.78 0.64 0.63
CVaR α = 0.3 0.85 0.85 0.62 0.61 0.56 0.56 0.46 0.47
Entropic Risk t = −1 0.87 0.86 0.83 0.82 0.79 0.79 0.64 0.63
Human-Aligned Risk a = 0.4, b = 0.8 0.87 0.87 0.83 0.82 0.78 0.78 0.63 0.62
Inverted CVaR α = 0.7 0.82 0.82 0.80 0.80 0.75 0.75 0.63 0.62
Mean-Variance c = 1 0.87 0.86 0.83 0.82 0.78 0.77 0.63 0.63
Trimmed Risk α = 0.3 0.85 0.85 0.82 0.82 0.78 0.78 0.63 0.63

Table 6. Classification: Noisy Labels, No Label Shift. Train and test accuracies for varying levels of noise when both the training and
test data is corrupted with noisy labels. Since the train and test dataset follow the same distribution, train and test accuracies are expected
to be similar.
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Objective 20% Noise 30% Noise 40% Noise 80% Noise

Expected Loss

CVaR

Entropic Risk

Human-Aligned Risk

Inverted CVaR

Mean-Variance

Trimmed Risk

Figure 4. Classification: Noisy Labels, Label Shift. The training loss distributions of models learned under each objective and different
levels of noise. Risk functionals which achieve lower expected loss on the test set than the expected loss risk functional are entropic risk,
inverted CVaR, and trimmed risk. Models learned with these functionals have a greater proportion of smaller losses than expected loss.
CVaR achieves uniform performance across all data points but incurs high loss for all.
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Objective 20% Noise 30% Noise 40% Noise 80% Noise

Expected Loss

CVaR

Entropic Risk

Human-Aligned Risk

Inverted CVaR

Mean-Variance

Trimmed Risk

Figure 5. Classification: Noisy Labels, Label Shift. The test loss distributions of models learned under each objective and different
levels of noise. Risk functionals which achieve the lowest expected loss have heavier concentrations of losses towards the left side of the
graph. While CVaR has a shorter tail distribution than all other risk functionals, it has high loss for all data points representing worse
performance.

Figure 6. Classification: Noisy Labels, Label Shift. Average number of training epochs till convergence criteria is met when training
under each risk functional.
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Objective 20% Noise 30% Noise 40% Noise 80% Noise

Expected Loss

CVaR

Entropic Risk

Human-Aligned Risk

Inverted CVaR

Mean-Variance

Trimmed Risk

Figure 7. Classification: Noisy Labels, No Label Shift. The decision boundaries of models learned under each objective and different
levels of noise. The color bar indicates the predicted likelihood of each class: blue means higher probability of the blue class, and green
means higher probability of the green class. Similar to the Classification: Noisy Labels, Label Shift experiment, CVaR has a uniform
decision boundary since both classes of data exist on both sides of the decision boundary during training.



RiskyZoo: A Library for Risk-Sensitive Supervised Learning

Training Objective Noise Expected CVaR Entropic Human Inv CVaR MV Trimmed

Expected Loss 0.2 0.42 0.88 0.38 0.47 0.20 0.87 0.24
CVaR 0.2 0.67 0.70 0.67 0.67 0.59 0.69 0.63
Entropic Risk 0.2 0.40 1.01 0.33 0.48 0.12 1.24 0.17
Human-Aligned Risk 0.2 0.44 0.83 0.42 0.48 0.25 0.76 0.29
Inverted CVaR 0.2 0.49 1.43 0.35 0.61 0.08 2.40 0.13
Mean-Variance 0.2 0.51 0.77 0.50 0.53 0.36 0.65 0.39
Trimmed Risk 0.2 0.47 1.42 0.31 0.60 0.06 2.70 0.09

Expected Loss 0.3 0.48 0.95 0.44 0.52 0.25 0.88 0.29
CVaR 0.3 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.3 0.46 1.12 0.39 0.54 0.16 1.27 0.21
Human-Aligned Risk 0.3 0.50 0.88 0.48 0.53 0.30 0.76 0.34
Inverted CVaR 0.3 0.57 1.67 0.39 0.71 0.09 2.89 0.14
Mean-Variance 0.3 0.56 0.80 0.55 0.58 0.41 0.68 0.43
Trimmed Risk 0.3 0.57 1.72 0.36 0.72 0.06 3.30 0.10

Expected Loss 0.4 0.53 0.98 0.50 0.57 0.30 0.85 0.35
CVaR 0.4 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.4 0.52 1.18 0.45 0.58 0.21 1.19 0.26
Human-Aligned Risk 0.4 0.55 0.90 0.53 0.58 0.36 0.76 0.40
Inverted CVaR 0.4 0.68 1.94 0.47 0.82 0.13 3.11 0.19
Mean-Variance 0.4 0.60 0.81 0.59 0.61 0.46 0.70 0.48
Trimmed Risk 0.4 0.67 2.06 0.42 0.84 0.07 3.78 0.11

Expected Loss 0.8 0.65 0.91 0.63 0.66 0.48 0.78 0.52
CVaR 0.8 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.8 0.64 1.02 0.61 0.66 0.42 0.87 0.49
Human-Aligned Risk 0.8 0.66 0.86 0.65 0.67 0.52 0.75 0.55
Inverted CVaR 0.8 0.95 2.52 0.69 1.08 0.24 3.33 0.37
Mean-Variance 0.8 0.67 0.79 0.66 0.67 0.56 0.72 0.59
Trimmed Risk 0.8 0.85 2.18 0.65 0.96 0.25 2.72 0.35

Table 7. Classification: Noisy Labels, No Label Shift. Comparison of train performances under each risk functional of models learned
under different training objectives. The rows represent the model learned under each training objective. The columns represent the
model’s performance under each risk functional with the same parameters used during training. Optimizing for a risk functional improves
a models performance under that objective.
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Training Objective Noise Expected CVaR Entropic Human Inv CVaR MV Trimmed

Expected Value 0.2 0.42 0.88 0.38 0.47 0.19 0.86 0.24
CVaR 0.2 0.67 0.70 0.67 0.67 0.59 0.69 0.63
Entropic Risk 0.2 0.40 1.01 0.33 0.47 0.12 1.21 0.17
Human-Aligned Risk 0.2 0.44 0.83 0.41 0.48 0.24 0.74 0.28
Inverted CVaR 0.2 0.50 1.44 0.35 0.62 0.08 2.40 0.13
Mean-Variance 0.2 0.51 0.76 0.50 0.53 0.36 0.65 0.39
Trimmed Risk 0.2 0.47 1.42 0.31 0.60 0.06 2.68 0.09

Expected Value 0.3 0.48 0.97 0.45 0.53 0.25 0.90 0.29
CVaR 0.3 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.3 0.47 1.15 0.40 0.55 0.16 1.31 0.21
Human-Aligned Risk 0.3 0.50 0.90 0.48 0.54 0.30 0.78 0.34
Inverted CVaR 0.3 0.58 1.71 0.40 0.72 0.09 2.92 0.14
Mean-Variance 0.3 0.56 0.80 0.55 0.58 0.41 0.69 0.44
Trimmed Risk 0.3 0.58 1.77 0.37 0.73 0.06 3.35 0.10

Expected Value 0.4 0.53 0.98 0.50 0.57 0.30 0.85 0.35
CVaR 0.4 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.4 0.52 1.19 0.46 0.59 0.21 1.19 0.26
Human-Aligned Risk 0.4 0.55 0.90 0.54 0.58 0.36 0.76 0.40
Inverted CVaR 0.4 0.69 1.96 0.48 0.83 0.13 3.12 0.20
Mean-Variance 0.4 0.60 0.81 0.59 0.61 0.46 0.70 0.49
Trimmed Risk 0.4 0.68 2.08 0.42 0.84 0.07 3.78 0.11

Expected Value 0.8 0.65 0.91 0.64 0.66 0.48 0.78 0.52
CVaR 0.8 0.69 0.70 0.69 0.69 0.62 0.71 0.66
Entropic Risk 0.8 0.64 1.02 0.61 0.66 0.42 0.88 0.49
Human-Aligned Risk 0.8 0.66 0.86 0.65 0.67 0.52 0.75 0.55
Inverted CVaR 0.8 0.95 2.50 0.69 1.08 0.25 3.29 0.38
Mean-Variance 0.8 0.67 0.79 0.66 0.67 0.56 0.72 0.59
Trimmed Risk 0.8 0.84 2.15 0.65 0.95 0.25 2.67 0.36

Table 8. Classification: Noisy Labels, No Label Shift. Comparison of test performances under each risk functional of models learned
under different training objectives. The rows represent the model learned under each training objective. The columns represent the
model’s performance under each risk functional with the same parameters used during training. Since the train and test distributions are
the same, performance metrics are similar to those under the train distribution.

Training Objective Accuracy Expected CVaR Entropic Human Inv CVaR MV Trimmed

Expected Loss 0.91 0.33 1.48 1.77 0.56 0.00 97.70 0.18
CVaR, α = 0.1 0.94 0.61 0.70 0.64 0.62 0.01 19.01 0.53
Entropic Risk, t = 10 0.93 0.54 0.74 0.60 0.57 0.01 19.82 0.46
Human, a = 0.4, b = 0 0.91 0.40 0.93 0.82 0.49 0.00 31.11 0.29
Inverted CVaR, α = 0.1 0.64 0.78 1.96 2.68 0.99 0.01 197.62 0.55
Mean-Variance, c = 50 0.93 0.65 0.71 0.66 0.66 0.01 19.86 0.58
Trimmed Risk, α = 0.1 0.90 0.31 2.16 3.10 0.70 0.00 229.77 0.10

Table 9. Classification: Covariate Shift. Comparison of train accuracy and performances under each risk functional of models learned
under different training objectives. The rows represent the model learned under each training objective. The columns represent the model’s
performance under each risk functional with the same parameters used during training. Aside from inverted CVaR, all risk functionals
achieve high accuracies on the training set.
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Objective 20% Noise 30% Noise 40% Noise 80% Noise

Expected Loss

CVaR

Entropic Risk

Human-Aligned Risk

Inverted CVaR

Mean-Variance

Trimmed Risk

Figure 8. Classification: Noisy Labels, No Label Shift. The training loss distributions of models learned under each objective and
different levels of noise. CVaR incurs high uniform loss across all data points.

Training Objective Accuracy Expected CVaR Entropic Human Inv CVaR MV Trimmed

Expected Loss 0.20 1.29 2.10 2.07 1.34 0.01 188.67 0.94
CVaR, α = 0.1 0.59 0.66 0.76 0.71 0.67 0.01 22.49 0.58
Entropic Risk, t = 10 0.41 0.69 0.84 0.75 0.70 0.01 25.72 0.58
Human, a = 0.4, b = 0 0.28 0.83 1.18 1.10 0.83 0.01 51.22 0.62
Inverted CVaR, α = 0.1 0.38 1.12 2.64 3.20 1.42 0.01 349.25 0.86
Mean-Variance, c = 50 0.43 0.69 0.73 0.69 0.69 0.01 21.10 0.61
Trimmed Risk, α = 0.1 0.18 1.85 3.45 3.54 2.06 0.02 505.05 1.38

Table 10. Classification: Covariate Shift. Comparison of test accuracy and performances under each risk functional of models learned
under different training objectives. The rows represent the model learned under each training objective. The columns represent the model’s
performance under each risk functional with the same parameters used during training. CVaR achieves nearly 3× greater accuracy and
2× lower average loss than the expected loss risk functional. High loss data points during training correspond to those with less examples.
However, in this covariate shift dataset, the training minority class corresponds to the test majority class. CVaR is able to protect against
this distribution shift.
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Objective 20% Noise 30% Noise 40% Noise 80% Noise

Expected Loss

CVaR

Entropic Risk
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Figure 9. Classification: Noisy Labels, No Label Shift. The test loss distributions of models learned under each objective and different
levels of noise. Since there is no distribution shift, the test loss distribution is similar to the training loss distribution.

Figure 10. Classification: Noisy Labels, No Label Shift. Average umber of training epochs till convergence criteria is met when training
under each risk functional.
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Original Data Train Data Test Data

Figure 11. Covariate shift train and test datasets.

B.4. Regression: Minority Group Performance

In this setting we study which risk functionals produce a model that minimizes risk across all subpopulations of data. We
follow the setup from (Duchi & Namkoong, 2018; Leqi et al., 2019). We draw covariates X ∼ N (0, I5) ∈ R5 and let the
noise distribution be ϵ ∼ N (0, 0.01). The target Y is drawn from

Y =

{
XT θ∗ + ϵ if X(1) ≤ 1.645

XT θ∗ +X(1) + ϵ otherwise
(1)

where θ∗ = 15 and X(1) is the first coordinate of X . Since P (X(1) > 1.645) = 0.05, {X|X(1) > 1.645} is the minority
subpopulation. There are 2000 training points and 20000 test points.

Testing and training performance under different risk functionals are summarized in Table 11 and Table 12 respectively.
Mean squared error is reported. We compute the risk for the majority subpopulation, minority subpopulation, and overall
population in the ”Majority”, ”Minority”, and ”Expected” columns in Table 11. CVaR achieves the lowest minority risk at
the expense of the highest majority risk. Entropic risk, human-aligned risk, and mean variance achieve lower majoirty risk
than CVaR, and lower minority risk than expected value, inverted CVaR, and trimmed risk.

Figure 14 illustrates the loss distributions incurred by each model. Models with longer distribution tails achieve lower
minority risk as the tail ends of the distribution reflect leeway in predicting samples from the majority subpopulation. Models
with very short tails reflect those which heavily prioritize the majority subpopulation. Figure 15 plots the average number of
training epochs for each objective. Trimmed risk and inverted CVaR, which achieve the lowest majority risks, take longer to
converge.

Training Objective Majority Minority Expected CVaR Entropic Human InvCVaR MV Trim

Expected Loss 0.04 2.81 0.17 1.49 0.46 0.43 0.02 2.23 0.03
CVaR, α = 0.1 0.18 0.96 0.22 0.87 0.24 0.33 0.12 0.63 0.14
Entropic Risk, t = 0.1 0.13 1.42 0.19 0.99 0.24 0.34 0.09 0.85 0.10
Human, a = 0.5, b = 0 0.11 1.50 0.18 1.00 0.23 0.33 0.08 0.89 0.09
Inverted CVaR, α = 0.9 0.02 5.23 0.28 2.67 3.42 0.75 0.02 6.86 0.02
Mean-Variance, c = 0.5 0.12 1.45 0.19 0.99 0.23 0.33 0.08 0.86 0.09
Trimmed Risk, α = 0.1 0.02 5.14 0.27 2.61 3.18 0.73 0.01 6.62 0.01

Table 11. Regression: Minority Group Performance. Comparison of test performances under each risk functional of models learned
under different training objectives. The rows represent the model learned under each training objective. The columns represent the
model’s performance under each risk functional with the same parameters used during training. Majority is the average loss, or risk,
under the majority subpopulation. Minority is the risk under the minority subpopulation. CVaR, entropic risk, human-aligned risk, and
mean-variance optimize for the tail performances which results in lower minority risk than expected loss. Inverted CVaR and trimmed risk
ignore the tail losses, resulting in higher minority risk.
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Figure 12. Classification: Covariate Shift. Average number of training epochs till convergence criteria is met when training under each
risk functional.

Training Objective Expected CVaR Entropic Human Inv CVaR MV Trimmed

Expected Loss 0.17 1.42 0.42 0.41 0.02 2.09 0.03
CVaR, α = 0.1 0.22 0.85 0.24 0.32 0.12 0.61 0.14
Entropic Risk, t = 0.1 0.19 0.96 0.23 0.33 0.08 0.80 0.09
Human, a = 0.5, b = 0 0.18 0.96 0.22 0.32 0.08 0.83 0.09
Inverted CVaR, α = 0.9 0.27 2.56 2.33 0.72 0.02 6.54 0.02
Mean-Variance, c = 0.5 0.18 0.96 0.22 0.32 0.08 0.81 0.09
Trimmed Risk, α = 0.1 0.26 2.51 2.20 0.70 0.01 6.32 0.01

Table 12. Regression: Minority Group Performance. Comparison of train performances under each risk functional of models learned
under different training objectives. The rows represent the model learned under each training objective. The columns represent the
model’s performance under each risk functional with the same parameters used during training. Optimizing for a risk functional improves
performance under the same objective and dataset.
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Objective Decision Boundary Train Loss Test Loss

Expected Loss

CVaR

Entropic Risk

Human-Aligned Risk

Inverted CVaR

Mean-Variance

Trimmed Risk

Figure 13. Classification: Covariate Shift. The decision boundaries, training loss distributions, and test loss distributions of models
learned under each objective. For decision boundaries the color bar indicates the predicted likelihood of each class: blue means higher
probability of the blue class, and green means higher probability of the green class. CVaR, entropic risk, human-aligned risk, and
mean-variance incur higher training losses than expected loss. However, this results in the correct decision boundary and shorter test loss
distribution tails.
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Objective Train Loss Test Loss

Expected Loss

CVaR

Entropic Risk

Human-Aligned Risk

Inverted CVaR

Mean-Variance

Trimmed Risk

Figure 14. Regression: Minority Group Performance Dataset. The train and test loss distributions under both majority and minority
data points of models learned under each objective. CVaR, entropic risk, human-aligned risk, and mean-variance have longer tails than
expected loss. However, this represents those models not overfitting to the majority class and not ignoring the minority class.
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B.5. Regression: Label Shift

We follow the same setup as the Minority Group Performance dataset but let the training targets Y be drawn from

Y =

{
XT θ∗ + ϵ+ 0.5 if X(1) ≤ 1.645

XT θ∗ +X(1) + ϵ+ 0.5 otherwise
(2)

where all targets are shifted up by 0.5. We leave the test targets unshifted. All other dataset details remain the same.

Results are summarized in Table 13 and Table 14 with mean squared error reported. Inverted CVaR, entropic risk and
trimmed risk outperform the expected loss risk functional in average loss on the test set. Loss distributions are shown in
Figure 16. Figure 17 summarizes the average number of training epochs for each risk functional.

Training Objective Expected CVaR Entropic Human Inv CVaR MV Trimmed

Expected Loss 0.40 0.43 0.36 0.42 0.33 0.44 0.36
CVaR, α = 0.9 0.40 0.44 0.36 0.42 0.33 0.44 0.36
Entropic Risk, t = −1 0.37 0.39 0.29 0.40 0.23 0.47 0.24
Human-Aligned Risk, a = 0.1, b = 0.9 0.41 0.45 0.37 0.44 0.34 0.45 0.38
Inverted CVaR, α = 0.9 0.37 0.39 0.28 0.41 0.23 0.48 0.24
Mean-Variance, c = 0.1 0.43 0.47 0.39 0.46 0.36 0.47 0.40
Trimmed Risk, α = 0.1 0.37 0.39 0.28 0.41 0.23 0.48 0.24

Table 13. Regression: Label Shift. Comparison of test performances under each risk functional of models learned under different
training objectives. The rows represent the model learned under each training objective. The columns represent the model’s performance
under each risk functional with the same parameters used during training. Inverted CVaR, entropic risk, and trimmed risk achieve lower
average test loss than the expected loss risk functional.

Training Objective Expected CVaR Entropic Human InvCVaR MV Trim

Expected Loss 0.15 0.17 0.08 0.19 0.03 0.24 0.03
CVaR, α = 0.9 0.15 0.17 0.08 0.19 0.03 0.24 0.04
Entropic Risk, t = −1 0.22 0.24 0.05 0.28 0.00 0.46 0.00
Human-Aligned Risk, a = 0.1, b = 0.9 0.15 0.17 0.09 0.19 0.04 0.23 0.05
Inverted CVaR, α = 0.9 0.23 0.25 0.05 0.29 0.00 0.48 0.00
Mean-Variance, c = 0.1 0.16 0.18 0.10 0.19 0.06 0.22 0.06
Trimmed Risk, α = 0.1 0.22 0.25 0.05 0.28 0.00 0.47 0.00

Table 14. Regression: Label Shift. Comparison of train performances under each risk functional of models learned under different
training objectives. The rows represent the model learned under each training objective. The columns represent the model’s performance
under each risk functional with the same parameters used during training. Expected loss, CVaR, human-aligned risk, and mean-variance
achieve the lowest average train loss. However, when the labels are shifted in the test set, the former risk functionals have worse
performance.

C. Comparison of CVaR Optimizers
CVaR has many proposed optimization methods. The dual form of CVaR is convex given a convex loss function (e.g. cross
entropy loss) so optimizing over the form will obtain a global optimum. Aligning with prior work (Curi et al., 2020), we call
this TruncCVaR: ρCVaR(α, ℓf (X,Y )) := infη∈R

{
α−1E [(ℓf (X,Y )− η)+ + η]

}
. We optimize both the CVaR objective

and inner parameter η. The maximum operation inside the expectation of TruncCVaR is non-smooth and prior works have
proposed Soft-CVaR, replacing E [x+] with T logE

[
ex/T

]
(Nemirovski & Shapiro, 2007). Stochastic optimization of

TruncCVaR can be challenging as only a few points from a batch of data will contain gradient information, and points which
do have gradients may result in exploding gradients (Curi et al., 2020). To address this, an adaptive sampling approach has
been proposed by Curi et al. (2020). Distributionally robust optimization methods have also been proposed to minimize
CVaR under distribution shifts (Duchi & Namkoong, 2018; Duchi et al., 2020).
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We compare all CVaR optimizers using the Classification: Noisy Label, No Label Shift dataset from Appendix B.2.
Results are summarized in Figure 18. While all optimizers achieve high accuracy, each trade-off CVaR and expected loss
performance. The first-order method labeled ”CVaR GD” Leqi et al. (2022) achieves the lowest test CVaR, but the highest
average loss. Soft-CVaR achieves the lowest average loss at the expense of the highest CVaR. ”Uniform Performance”
(Duchi & Namkoong, 2018), ”Covariate Mixtures” (Duchi et al., 2020), ”Adaptive Sampling” (Curi et al., 2020), and
TruncCVaR perform between the other two methods.

D. CIFAR-10: Learning under Noisy Labels
We train VGG-11 models to optimize each of the risk functionals from Section 2.1. CIFAR-10 contains 50000 training
samples and 10000 test samples. We corrupt 80% of the training labels by sampling targets uniformly at random from
all classes. This results in around 27% of training labels matching the ground truth. We train the models for 150 epochs
using a learning rate of 5e-3 and batch sizes of 5000. Results are summarized in Table 15 and Table 16. Entropic risk,
human-aligned risk, and mean-variance achieve the highest train and test accuracies. Interestingly, with a negative c
parameter, mean-variance achieves higher accuracy and lower variance than expected loss.

Training Objective Accuracy Expected CVaR Entropic Human Inv CVaR MV Trimmed

Expected Loss 0.19 2.24 2.31 2.20 2.04 2.17 2.25 2.25
CVaR, α = 0.9 0.17 2.27 2.30 2.27 2.20 2.24 2.27 2.27
Entropic Risk, t = −0.5 0.21 2.29 2.45 2.14 1.88 2.15 2.35 2.30
Human, a = 0.8, b = 0.2 0.20 2.37 2.57 2.16 1.81 2.25 2.45 2.41
Inverted CVaR, α = 0.9 0.19 2.64 2.77 2.29 2.57 2.13 2.91 2.40
Mean-Variance, c = −0.1 0.20 2.24 2.33 2.18 1.99 2.16 2.26 2.25
Trimmed Risk, α = 0.05 0.18 2.43 2.51 2.26 2.40 2.16 2.59 2.22

Table 15. CIFAR-10: Learning under Noisy Labels Comparison of train performances under each risk functional of models learned
under different training objectives. The rows represent the model learned under each training objective. The columns represent the
model’s performance under each risk functional with the same parameters used during training.

Training Objective Accuracy Expected CVaR Entropic Human Inv CVaR MV Trimmed

Expected Loss 0.47 1.95 2.02 1.92 1.78 1.89 1.96 1.95
CVaR, α = 0.9 0.36 2.18 2.20 2.17 2.12 2.15 2.18 2.17
Entropic Risk, t = −0.5 0.52 1.61 1.73 1.50 1.31 1.48 1.66 1.60
Human, a = 0.8, b = 0.2 0.51 1.56 1.69 1.39 1.21 1.39 1.63 1.54
Inverted CVaR, α = 0.9 0.42 2.24 2.35 2.00 2.15 1.86 2.40 2.05
Mean-Variance, c = −0.1 0.48 1.85 1.93 1.80 1.63 1.76 1.87 1.85
Trimmed Risk, α = 0.05 0.41 2.07 2.12 2.03 2.00 1.98 2.10 2.02

Table 16. CIFAR-10: Learning under Noisy Labels Comparison of test performances under each risk functional of models learned
under different training objectives. The rows represent the model learned under each training objective. The columns represent the
model’s performance under each risk functional with the same parameters used during training.
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Figure 15. Regression: Minority Group Performance. Average number of training epochs till convergence criteria is met when training
under each risk functional.



RiskyZoo: A Library for Risk-Sensitive Supervised Learning

Objective Train Loss Test Loss

Expected Loss
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Entropic Risk

Human-Aligned Risk

Inverted CVaR

Mean-Variance
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Figure 16. Regression: Label Shift. The train and test loss distributions of models learned under each objective. Risk functionals which
are more robust to label shift achieve shorter test loss tail distributions.
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Figure 17. Regression: Label Shift. Average number of training epochs till convergence criteria is met when training under each risk
functional.

Figure 18. Comparison of CVaR optimizer performances achieved on the test set described in Appendix B.2. There is a trade-off between
achieving low CVaR and low cross-entropy loss. The first-order method CVaR GD is the best at optimizing for CVaR.


