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Abstract
Trees are widely used as interpretable models.
However, when they are greedily trained they can
yield suboptimal predictive performance. Train-
ing soft trees, with probabilistic splits rather than
deterministic ones, provides a way to supposedly
globally optimize tree models. For interpretability
purposes, a hard tree can be obtained from a soft
tree by binarizing the probabilistic splits, called
hardening. Unfortunately, the good performance
of the soft model is often lost after hardening. We
systematically study two factors contributing to
the performance drop: first, the loss surface of
the soft tree loss has many local optima (and thus
the logic for using the soft tree loss becomes less
clear), and second, the relative values of the soft
tree loss do not correspond to relative values of
the hard tree loss. We also demonstrate that sim-
ple mitigation methods in literature do not fully
mitigate the performance drop.

1. Introduction
Interpretability is an important property of models that are
deployed for high stakes decision-making tasks (Rudin,
2018; Brundage et al., 2020). In practice, trees are often con-
sidered to be inherently interpretable models and they are
widely studied and applied for interpretability purposes (e.g.
Das & Rad, 2020). The reason is that, in trees, each node
represents a specific condition and the subsequent assign-
ments of inputs to decision regions depend deterministically
on satisfying these conditions. Thus, for each input, we can
output one decision rule explaining the tree’s prediction.

Although trees are human-interpretable, their optimization
is challenging. First, trees are often trained greedily (e.g.
Mehta et al., 1996), optimizing the split for one node at a
time, which generally results in suboptimal models (Rudin
et al., 2021). Second, trees cannot be easily incorporated
into end-to-end training pipelines with other models since
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traditional tree training is not differentiable.

To address these issues, a body of works proposes to first
train a soft tree—that is, a tree in which each split is prob-
abilistic, and thus each input is assigned to each decision
region with certain probability, and the model prediction is
a weighted sum of the prediction of each region—and then
harden the soft tree into a hard one. The idea is that the
loss for the soft tree serves as a surrogate for the hard tree
training. The soft tree loss has desirable properties such as
differentiability and thus training can be jointly done with
other models in a task pipeline (e.g. Frosst & Hinton, 2017;
Tanno et al., 2018).

In practice, the hardening process works well for trees in
classification settings due to the discretization nature of
classification tasks (Frosst & Hinton, 2017; Coppens et al.,
2019; Rajaguru & Prabhakar, 2017). Unfortunately, for re-
gression tasks, these promises have not been realized: there
is often a performance gap when obtaining hard trees via
soft tree training. In this work, we systematically study two
types of soft trees. We summarize two key factors contribut-
ing to the performance gap of trees on regression tasks. (1)
Soft trees training is highly non-convex (with many local
optima); thus, the training process is very sensitive to ini-
tialization and learning rate; thus, moving from optimizing
a non-differentiable loss function to a continuous but highly
non-convex may provide limited practical benefit. (2) The
hardening process does not preserve the relative orderings
of the loss: a soft tree with a low loss might harden to a tree
with high loss, whereas a soft tree with slightly worse per-
formance might harden to a much better hard tree. Because
of the above factors, when designing soft tree losses as sur-
rogates, we need to carefully investigate their smoothness
and their consistency with the hard tree loss.

2. Related Work on Designing Soft Tree Losses
There is a large body of works that use soft tree loss as
a surrogate for training a hard tree. For example, Irsoy
et al. force the soft tree to behave like a hard tree by using
a hyper-parameter to control the steepness of the sigmoid
function that determines the split at each node in the soft
tree. Xu et al. approximate the loss function using reparame-
terization tricks and optimize the tree using primal iteration.
As another example, Frosst & Hinton propose adding a
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penalty term to the loss function, which avoids poor local
optima by encouraging a balanced tree. However, these
methods do not fully mitigate the performance gap. In this
work, we specifically study the hyper-parameter trick (Ir-
soy et al., 2012) and show that there is a trade-off between
the soft tree optimization and the performance gap due to
hardening. We observe a similar trade-off in other methods
(Appendix 7). We argue that systematic studies of other
soft tree optimization works are also needed.

3. Background
We formalize soft trees using Hierarchical Mixture of Ex-
perts (HMEs) (Jordan & Jacobs, 1994). We consider
a regression task consisting of N observations, D =
{xn,yn}Nn=1 with xn ∈ Rl, yn ∈ Rk. We consider a
binary HME of depth D with 2D − 1 gating networks at
the non-terminal nodes and 2D expert networks at the leaf
nodes. The gating networks divide the input space into a set
of regions with expert networks determining the predicted
values of each region. Specifically, we denote the gating
network at i-th non-terminal node as a binary variable,

zi ∼ Bern(pi), pi =
1

1 + e−βv⊤
i xn

, for i = 1, · · · , 2D−1

(1)
where vi defines the boundaries of divided regions and β
controls how soft the boundaries are (how fast one region
transits into another). Denote the expert network at j-th leaf
node as tj . The conditional distribution of the expert tj
given a input x is given by

p(t|xn, τj) = N (t|hj(xn), τ
−1
j I), for j = 1, · · · , 2D

where τj is the precision (inverse variance) of the distri-
bution, I is an identity matrix and hj is link functions that
define the relationship between the inputs and the leaf nodes.

Denote the unique path with length D to j-th leaf node as
a vector ξj = {zi1 , · · · , ziD} where id ∈ {1, · · · , 2D − 1}.
HMEs work by first assigning an input x to each leaf node
j with probability

p(ξj |xn,v) =

D∏
d=1

p(zid |xn,v),

then giving an output by using a weighted sum of the outputs
of expert networks,

p(yn|xn,v, τ ) =

2D∑
j

p(t|hj(xn), τj)p(ξj |xn,v). (2)

We are interested in the performance of hard trees. To obtain
a hard tree, instead of marginalizing over leaf nodes, we
assign the input to leaf nodes following the path with the

greatest probability,

phard(yn|xn,v, τ ) = p(t|hj∗(xn), τj∗)

where j∗ = argmaxj p(ξj |xn,v). We define the above
process as hardening. By hardening, we hope to gain an
interpretable model while retaining the predictive perfor-
mance of the soft tree.

In this work, we investigate expert networks defined by two
different link functions: (1) constant experts hj(xn) = c
where c ∈ Rk, (2) linear experts with hj(xn) = Wjxn

where Wj ∈ Rk×l.

4. Experimental Setup
We define the difference in terms of the predictive perfor-
mance between the soft and the corresponding hardened
model as the performance gap due to hardening. We in-
vestigate the performance gap with two types of soft trees:
HMEs with constant experts for easy analyses, and HMEs
with linear experts for more complicated regression tasks.

For all experiments, the hyperparameter β (Equation 1) is set
to 1 unless otherwise stated. For each type of HMEs, we use
different algorithms for inference. For HMEs with constant
experts, we estimate parameters c,v, τ by maximizing the
likelihood,

L =

N∑
n=1

p(yn|xn,v, τ )

where p(yn|xn,v, τ ) is given in Equation 2. We perform
optimization with stochastic gradient descent (SGD), which
helps avoid poor local optima.

For HMEs with linear constants, we perform Variational
Inference (VI), which avoids severe overfitting of maximum
likelihood estimates. (Bishop & Svensén, 2012).

Datasets We designed two toy datasets: (1) a step function
with 4 pieces, which matches inductive biases of HMEs with
constant experts; (2) a cubic function y = 3x3 with a sparse
data region, which is a common benchmark for uncertainty
quantification (e.g. Hernández-Lobato & Adams, 2015;
Sun et al., 2019; Yao et al., 2019). For the step function,
we used a 2-layer HME (the minimal needed capacity) with
constant experts. For the cubic function, we tested 5, 6,
7-layer HMEs with linear experts. To obtain the uncertainty
estimate, we perform bootstrap by random sampling the
training data with replacement, and then fitting one HME
for each data resampling.

Evaluation Metrics For the step function, we compare
the MSEs of soft and hard trees. For the cubic funcion, we
investigate the likelihood. Denote the HME trained from
s-th data resample D(s) as HME(s). Given new data points
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{x∗
m,y∗

m}Mm=1, the test loglikelihood is computed as

log

M∏
m=1

p(y∗
m|x∗

m,D) =

1

S

S∑
s=1

M∑
m=1

log p(y∗
m|x∗

m,D(s), HME(s))

5. Experiments
In this section, we analyze factors contributing to the per-
formance gap due to hardening and the resulting effects.
We also study the efficacy of a method designed to reduce
the performance gap using a hyper-parameter to control the
steepness of the soft tree.

5.1. Ill-behaved Loss Landscape

(a) Loss during Training

(b) Loss near Local Optima 1 (c) Loss near Local Optima 2

Figure 1. The landscape of the loss function of the step function:
(a) trace of the loss function of 50k training iterations. The green
and blue curve represent the loss of the soft and the hard tree
respectively. The black and the red line represents two different
local optima of the soft tree encountered during training. The trend
of the soft tree loss is not consistent to that of the hard tree loss.
(b)(c) The surface plots of the loss function near the two local
optima (black line and red line in (a), respectively) with the red
dots representing the minimum points. We see that the loss surface
exhibits both high curvature and large plateau.

The loss function of soft trees has local optima with high
curvature and large plateaus, which are hard to escape.
We investigate the loss function landscape of HMEs with
constant experts. Figure 1a shows the trace of the soft tree
loss of the step function during training. We see that SGD
reaches the first local optima around 15k iteration. Figure
1b plots the loss landscape near the first optima, which is

deep, and thus hard to escape. SGD exhibits oscillation
(20k − 30k iteration) along the high curvature direction
as it tries to get away from the local optimum with large
gradients. After SGD escapes the first local optimum, it
reaches a better local optimum (the loss stops improving at
the end). Figure 1c shows that the second local optimum
has a large plateau, which may take very long for SGD to
escape. The ill-behaved landscape is concerning given the
HME is only of depth 2. When the depth of HME grows, the
number of local optima may increase exponentially as the
number of parameters increases, which makes optimization
extremely difficult.

(a) (b)

(c) (d)

Figure 2. Plots of the best soft tree during training and the cor-
responding hard tree performance given different initialization
strategy: (a) all parameters are randomly initialized (b) constant
experts are fixed at ground truth and the gating networks are ran-
domly initialized (c) constant experts are initialized near ground
truth and the gating networks are randomly initialized (d) the gating
networks are initialized near ground truth and the constant experts
are randomly initialized. Trees achieve optima performance only
when the gating networks are initialized close to the ground truth.

Soft tree training is highly sensitivity to hyperparam-
eters. Because of the high curvature and the plateau of
the loss landscape, learning is highly sensitive to the choice
of initialization and learning rate, and thus the tree perfor-
mance has a large variance.

Figure 2 shows the performance of HMEs with constant ex-
perts on the step function task given different initialization.
We see that SGD converges to very different solutions for
both soft and hard trees depending on where the parameters
are initialized (More examples of different initialization in
Figure 6). The soft tree can reach the optimal performance
only when the gating networks are initialized near ground
truth (i.e. the tree splits the input region reasonably well
initially ). For flexible models like HMEs with linear ex-
perts optimized through VI, we also need multiple random
restarts to converge to the global optimum. With reason-
able initialization and learning rate, VI can find the best
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solution quarter of the time (Figure 5). In practice, with
more complicated data structure, the hyperparameter tun-
ing gets trickier—again making soft tree optimization not
necessarily an easier alternative to hard tree optimization.

(a) Performance of Soft Tree Ensembles

(b) Performance of Corresponding Hard Tree Ensembles

Figure 3. Plots of posterior predictive distribution with different
depths on the cubic function task (a) the soft tree ensembles (b)
the corresponding hard tree ensembles. For soft tree ensembles,
the predictive variance of the data scarce region decreases as the
depth increases while that increases for hard tree ensembles.

5.2. Inconsistency with the Hard Tree Loss

Soft tree losses do not preserve the relative ordering of
hard tree losses. A better soft tree does not necessarily
harden to a better hard tree. In Figure 1a, we see that
during training, the trend of the hard tree loss (blue curve)
is not consistent with the one of the soft tree (green curve).
During training, the loss of the hard tree increases around
the 20k-th iteration and then decreases drastically around
the 30k-th iteration. Contrarily, the loss of the soft tree
decreases in general. Comparing Figure 2a to 2b, we see
that a better soft tree can result in a much worse hard tree.

Similar inconsistency can be observed in terms of log-
likelihood. Uncertainty quantification for discrete func-
tions is challeging. Thus, we use the cubic function for
the uncertainty estimate task. Figure 3 shows the posterior
predictive distribution of tree ensembles with increasing
tree depth. We see that soft trees with higher log-likelihood
harden to trees with lower log-likelihood (In the data scarce
region, soft trees with lower predictive posterior variance
harden to trees with much higher predictive variance).

5.3. The Trade-off Between Soft Optimization and
Performance Gap Due to Hardening

A commonly method for reducing the performance gap due
to hardening is to encourage the soft tree to behave more
like a hard one during training. However, we show that there
is a trade-off between the ease of soft tree optimization and
performance gap. We study this trade-off by varying the
hyperparameter β (Equation 1). A larger β represents a
steeper soft tree and thus a closer match between the soft
and hard tree losses—but also a loss landscape that is as
hard to optimize as the hard tree loss.

(a) Trees with β = 3 (b) Loss surface with β = 3

(c) Trees with β = 5 (d) Loss surface with β = 5

Figure 4. (a)(c) Plots of soft and hard tree performance with β =
3, 5. When β increases, the soft and the hard tree become more
similar. (b)(d) Plots of loss surface near the local optimum with
β = 3, 5. When β increases, the loss landscape becomes more
pathological with both high curvature and large plateau.

When β increases, the performance gap due to hardening
decreases. However, the loss function becomes harder
to optimize. We tested different β on the step function
task. Figure 4a, 4c show that when β increases, the soft tree
becomes steeper and performs more similarly to the hard
tree (the difference between MSEs get smaller). Although
the performance gap decreases, the loss landscape becomes
more challenging. From Figure 4b, 4d, we see that the local
optima exists both high curvature and large plateau (unlike
1b, 1c, there is only one pathology in each). The difficulty
of managing this trade-off calls into question the practical
utility of obtaining hard trees by training proxy soft trees.

6. Conclusion
This paper systematically studies factors contributing to
the performance gap between soft trees and their hardened
counterparts. We also show that simple methods for clos-
ing the performance gap do not necessarily yield hard trees
with better predictive performance - as they trade-off be-
tween difficult soft optimization and performance gap due
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to hardening. Although existing works aim to obtain pre-
dictive and interpretable models by globally optimizing soft
trees and then hardening the solution, we show that this
way of training hard trees does not get around fundamental
issues on how fundamentally difficult it is to train a hard
tree (Appendix Figure 7). We encourage careful investiga-
tion of the soft tree loss landscapes of relevant works and
use of advanced optimization methods such as learning rate
annealing to avoid poor local optima.
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A. Datasets & Hyperparameter
Step Function

f(x) =


0 0 < x ≤ 0.25

1 0.25 < x ≤ 0.5

2 0.5 < x ≤ 0.75

3 0.75 < x ≤ 1

We used a 2-layer HME with constant experts. Parameters
are randomly initialized with Unif(0, 1) and solved through
stochastic gradient descent. We perform optimization with
learning rate of 0.001, batch size of 32, and number of epoch
of 50000.

Cubic Function The training data is generated with y =
3x3 +N (0, 0.2) with the input x uniformly sampled from
[−1,−0.5]

⋃
[0.5, 1.0]. We we tested 5, 6, 7-layer HMEs

with linear experts. Parameters are randomly initialized
with Unif(0, 1) and solved via Variational Inference with
learning rate of 0.001 number of epoch of 5000.

B. Additional Experiments
B.1. High sensitivity to hyperparameters

(a) 1st Run, Local Optimum (b) 2nd Run, Local Optimum

(c) 3rd Run, Global Optimum (d) 4th Run, Local Optimum

Figure 5. Plots of HMEs with random restart. HMEs converge to
the global optimum one out of four runs with other times stuck at
poor local optima.

Even for flexible models like HMEs with linear experts op-
timized through VI, we often need multiple random restarts
to converge to an optimal solution. We tested HMEs with
linear experts with a piece-wise function with linear compo-
nents. Figure 5 shows that even for a simple 4-component
piece-wise function, HMEs struggle to always find the
global optimum during training.

(a) Soft Tree, Random Split 0 (b) Hardened Tree for (a)

(c) Soft Tree, Random Split 1 (d) Hardened Tree for (c)

(e) Soft Tree, Random Split 2 (f) Hardened Tree for (e)

Figure 6. Plots of tree results with different data split. (a)(c)(e)
Soft trees learnt with different training/test data split. (b)(d)(f)
Corresponding hard trees. Although the soft trees look similar
among different random states, the corresponding hardened trees
vary a lot from each other.

Due to the ill-behaved loss landscape, trees are highly sensi-
tive to hyperparameters such as data split, parameter initial-
ization, learning rate etc. Figure 6 shows a regression task
where the function oscillates within a small neighborhood
and requires a large tree. We split the training and test data
with different random states and fit HMEs with linear ex-
perts for the training data and evaluate the test data. As we
can see from the figures, although the soft trees look similar
among different random states, the corresponding hardened
trees vary a lot from each other.

B.2. The Trade-off Between Soft Optimization and
Performance Gap of Other Related Works

(a) One Stage Tree (b) Tree with regularization

Figure 7. Plots of trees obtained from optimizing different loss
functions: (a) One Stage Tree: although the soft and hard tree
perform similarly, both trees perform badly in terms of MSEs. (b)
Trees with balance regularization: the soft tree performs well with
the hard tree performs much worse than the soft tree.

In addition to controlling the steepness of the soft tree, there
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are other works focus on designing soft tree losses as a
surrogate for training the hard tree. We tested two com-
mon approaches.(1) One Stage Tree, which approximates
the loss function using reparameterization tricks and then
optimizes the tree using primal iteration Xu et al.. (2) Soft
tree loss with a regularization, which helps SGD avoid poor
local optima by encouraging more balanced trees (Frosst
& Hinton, 2017). From Figure 7, we also see the trade-off
between optimization and the performance gap. Although
One Stage Tree gives similar soft and hard trees, both trees
perform badly due to optimization difficulty. Trees with a
balanced regularization gives well-performing soft trees but
much worse hard trees.


