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Abstract
Fairness researchers in machine learning (ML)
have coalesced around several fairness criteria
which provide formal definitions of what it means
for an ML model to be fair. However, these cri-
teria have some serious limitations. We identify
four key shortcomings of these formal fairness
criteria, and aim to help to address them by ex-
tending performative prediction to include a dis-
tributionally robust objective.

1. Introduction
In the past two decades, machine learning (ML) has moved
from the confines of research institutes and university lab-
oratories to become a core element of the global economy.
ML models are now deployed at enormous scales in com-
plex environments, often making high stakes decision. Too
often, however, this is done without adequate concern for
the fairness and robustness of these ML models. Fairness in
ML is a burgeoning research area, but much of the work in
fairness, particularly in defining formal fairness criteria, has
been limited to the static classification setting.

Efforts to define fairness in ML have resulted in myriad
criteria being proposed, most of which are equivalent to,
or relaxations of, three core definitions of fairness: inde-
pendence, separation, and sufficiency (Barocas et al., 2019;
Chouldechova, 2017; Corbett-Davies et al., 2017; Dwork
et al., 2012; Hardt et al., 2016b; Berk et al., 2021; Zafar
et al., 2017; Kleinberg et al.; Woodworth et al., 2017). These
formal fairness criteria assume a sensitive characteristic or
protected demographic group for whom we want to ensure
our model is non-discriminatory. The fairness criteria are
then properties of the joint distribution of this characteristic,
the output of the classifier, and the true labels of the data.
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While these fairness definitions have been a useful starting
point in the consideration of discrimination by ML models,
they have several limitations.

1. They are not equivalent and, in most scenarios, they
are incompatible.

2. They apply only to static supervised learning problems
and ignore the dynamic environments characteristic of
many real world scenarios with fairness concerns.

3. They rely on having access to demographic informa-
tion. The definitions can only be used if one has access
to the sensitive characteristic, which is often not the
case.

4. They ignore intersectionality. The criteria do not take
into account individuals who may sit at the intersection
of several sensitive demographic groups.

Fairness is fundamentally a philosophical and political ques-
tion, and the notion of having a single, universal formal
definition of fairness for ML is likely naı̈ve. For this reason
this work does not attempt to formally define fairness and
largely ignores the first problem noted above. We do, how-
ever, attempt to address issues 2, 3, and 4 by drawing upon
two recent areas of research with implications for fairness
in ML: performative prediction and distributionally robust
optimization (DRO).

DRO offers a compelling and flexible method for training
non-discriminatory algorithms without needing access to
demographic information. Performative prediction, on the
other hand, attempts to outline a theoretical framework in
which to reason about ML models in dynamic environments,
when the act of deploying a model influences the distribution
on which it is making decisions.

We combine these two areas of research to extend the perfor-
mative prediction framework developed in (Perdomo et al.,
2020). The work in performative prediction has thus far
only concerned risk minimization and empirical risk min-
imization (ERM), so we extend definitions to include a
distributionally robust objective and prove an analogous
convergence result to that shown in (Perdomo et al., 2020).
Due to space constraints, we provide a discussion of related
work in section A.1 of the appendix.
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2. Background
2.1. Distributionally Robust Optimization

The de facto objective used in most supervised learning set-
tings is ERM. In ERM we attempt to approximate minimiza-
tion of the expected loss over the data generating distribution
by minimizing the average loss over our data set:

ĥ = argmin
h∈H

1

n

n∑
i=1

ℓ(h(xi), yi),

where h represents a hypothesis or model,H a hypothesis
class, and ℓ a non-negative loss function. ERM is intuitively
appealing and has important theoretical guarantees associ-
ated with it (Vapnik, 1991). It can, however, be problematic
when it comes to fairness concerns.

Since we are averaging the loss over our data points, in
general, ERM causes an algorithm to focus on majority
cases while ignoring minority cases or rare events.

DRO, on the other hand, considers the distributionally ro-
bust problem in which we construct an uncertainty set
around the data generating distribution and attempt to mini-
mize the expected loss on the worst-case distribution within
this uncertainty set. Following (Duchi & Namkoong, 2021)
we define our uncertainty set as

Uf (P ) = {Q : Df (Q||P ) ≤ ρ},

where Df (Q||P ) is an f -divergence probability distribu-
tions between Q and P .

Formally the distributionally robust problem is as follows:

minimize
θ∈Θ

{
sup

Q≪P0

{EQ[ℓ(θ;X)] : Q ∈ Uf (P0)}
}
,

where Θ ⊂ Rd is the parameter (model) space, P0 is the
data generating distribution on the measure space (X ,A),
X is a random element of X and ℓ : Θ× X → R is a loss
function.

In this formulation of DRO, the uncertainty set is determined
by an f -divergence between Q and P0 and {EQ[ℓ(θ;X)] :
Q ∈ Uf (P0)} is the set of all expected losses over the
f -divergence ball of radius ρ, centred at P0. Alternative
DRO formulations utilizing different measures of distance
between probability distributions such as Wasserstein balls
have also been explored (Wald, 1945; Wozabal, 2012; Pflug
& Wozabal, 2007; Lee & Raginsky, 2018).

Unlike ERM, DRO does not equally weight each data point,
but instead up-weights data points on which the model is
achieving high loss. This means that the model should
achieve somewhat uniform performance on individuals
across demographic groups (Duchi & Namkoong, 2021;

Duchi et al., 2020; Namkoong & Duchi, 2016; Hashimoto
et al., 2018). This does not require any access to demo-
graphic information and naturally accounts for intersection-
ality.

2.2. Performative Prediction

Performative prediction attempts to formalize the notion
of a model affecting the distribution on which it is making
predictions in a type of feedback loop. There are many
examples of scenarios with fairness concerns in which this
is likely to occur, such as predictive policing or college
admission decisions.

This notion of performativity of an algorithm is captured by
a distribution map, D(θ), which maps the data generating
distribution to a new distribution as a function of the parame-
ters of the model which has been deployed. In performative
prediction, the problem of risk minimization becomes per-
formative risk minimization and involves minimizing the
expected loss on the induced distribution rather than the data
generating distribution. The performative risk of a model is
defined as

PR(θ) = EZ∼D(θ)[ℓ(Z; θ)].

Solution concepts differ for performative prediction and
traditional supervised learning as the distribution shift com-
plicates the learning problem. To capture this distinctive
problem, (Perdomo et al., 2020) define performative opti-
mality and performative stability.

Definition 2.1. (performative optimality) A model, fθPO
, is

performatively optimal if the following relationship holds:

θPO = argmin
θ∈Θ

EZ∼D(θ)[ℓ(Z; θ)].

Equivalently, θPO = argminθ∈Θ PR(θ) where PR(θ) is
the performative risk as defined above.

A performatively optimal point is a minimizer of the perfor-
mative risk. An alternative solution concept is referred to as
performative stability.

Definition 2.2. (performative stability) A model, fθPS
, is

performatively stable if the following relationship holds:

θPS = argmin
θ∈Θ

EZ∼D(θPS)[ℓ(Z; θ)].

Define DPR(θ, θ′) := EZ∼D(θ)[ℓ(Z; θ′)] as the decoupled
performative risk; then θPS = argminθ∈Θ DPR(θPS , θ).

A performatively stable model is not necessarily a minimizer
of the performative risk, but it is optimal on the distribution
it induces.

Performative prediction presents a special case of learning
under distribution drift, where the distribution drift is a
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function of the model deployed. A common approach in
supervised learning under distribution drift is to retrain a
model on newly collected data. While this does not directly
minimize performative risk, it is a realistic representation of
the strategy taken by many machine learning practitioners
and can be a reasonable solution in some scenarios.
Definition 2.3. (repeated risk minimization) Repeated risk
minimization (RRM) refers to the procedure where, start-
ing from an initial model fθ0 , we perform the following
sequence of updates for every t ≥ 0:

θt+1 = G(θt) := argmin
θ∈Θ

EZ∼D(θt)[ℓ(Z; θ)].

In (Perdomo et al., 2020) the authors show that under certain
smoothness and convexity conditions on the loss function
and distribution map, RRM is a contraction mapping that
converges to a fixed point which is a performatively stable
model. The smoothness condition on the distribution map is
called ϵ-sensitivity and ensures that the distribution shift is
relatively small for small changes in the model parameters.
Section A.3 contains an extended discussion of performative
prediction and formally defines all the relevant concepts.

3. Convergence of Repeated Distributionally
Robust Optimization

In order to extend the performative prediction framework to
encompass DRO, we need to redefine many of the concepts
from (Perdomo et al., 2020) to account for the distribution-
ally robust objective. The supremum over the uncertainty
set introduces additional complications necessitating novel
definitions and an altered proof for convergence to a per-
formatively stable model. We define robust performative
risk, robust performative optimality, robust performative
stability, and repeated distributionally robust optimization
(RDRO). We relegate formal definitions to section A.4 in
the interest of space.

The assumptions on the loss function and distribution map
required for convergence of RRM do not suffice for RDRO,
as the supremum over the uncertainty set alters the mathe-
matical properties of the robust objective. We adapt these
conditions to extend them to the distributionally robust ob-
jective. The original conditions from (Perdomo et al., 2020)
can be found in A.3.
Definition 3.1. (robust β-joint smoothness) We say the
distributionally robust objective is robustly β-jointly smooth
if for all θ, θ′ ∈ Θ and z, z′ ∈ Z the gradient,

∇θ sup
Q≪D(θ)

{EZ∼Q[ℓ(Z; θ)] : Q ∈ Uf (D(θ))},

exists and is β-Lipschitz in z and θ.
Definition 3.2. (robust γ-strong convexity) We say the dis-
tributionally robust objective is robustly γ-strongly convex

if for all θ, θ′ ∈ Θ and z ∈ Z

sup
Q≪D(θ)

{EZ∼Q[ℓ(Z; θ)] : Q ∈ Uf (D(θ))}

is γ-strongly convex.

Definition 3.3. (robust ϵ-sensitivity)
Let D∗(θ) = argmaxQ:Q∈Uf (D(θ)) EZ∼Q[ℓ(Z; θ)]. As-
sume that a distribution map, D(·), is ϵ-sensitive1. We
say that this distribution map is robustly ϵ-sensitive if there
exists ω > 0 such that for any θ, θ′ ∈ Θ

W1 (D∗(θ),D∗(θ′)) ≤ ωW1 (D(θ),D(θ′)) ≤ ωϵ||θ− θ′||,

where W1 denotes the Wasserstein-1 distance.

We now state our convergence theorem for DRO in the per-
formative prediction setting. This theorem says that under
the conditions outlined above, repeatedly optimizing a distri-
butionally robust objective will converge to a performatively
stable model at a linear rate. The proof can be found in A.4.

Theorem 3.4. Suppose that the distributionally robust ob-
jective satisfies definitions 3.1 and 3.2, and that the dis-
tribution map satisfies definition 3.3. Then the following
statements are true:

1. ||G(θ)−G(θ′)||2 ≤ ωϵβγ ||θ − θ′||2, for all θ, θ′ ∈ Θ

2. If ωϵ < γ
β , the iterates θt of RDRO converge to

a unique robustly performatively stable point θPS

at a linear rate: ||θt − θPS ||2 ≤ δ for t ≥(
1− ωϵβγ

)−1

log
(

||θ0−θPS ||2
δ

)
.

Note that G(θ) := argminθ∈Θ supQ≪D(θ){EZ∼Q[ℓ(Z; θ)] :
Q ∈ Uf (D(θ))}.

The importance of this theorem is that it suggests that RDRO
should exhibit similar convergence behaviour to RRM. As
discussed earlier, however, training models with ERM is
liable to result in models which are discriminatory towards
minority subgroups, while models trained with DRO should
exhibit uniform performance across different subgroups.
What this implies is that RRM may converge to unfair fixed
points, while RDRO should converge to fair fixed points.

4. Experiments
We run experiments to empirically verify the convergence
of RDRO as compared to RRM, as well as to demonstrate
the utility of DRO in learning fair models in the presence
of data characterized by majority and minority subgroups.
Implementation details can be found in A.5.

1The formal definition of ϵ-sensitivity is given in A.3.
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Figure 1. Plot of the normalized distance between successive val-
ues of θ for ERM.

Figure 2. Plot of the normalized distance between successive val-
ues of θ for DRO.

For our first experiment we reproduce an experiment from
(Perdomo et al., 2020) using a credit extension dataset from
the Kaggle competition Give Me Some Credit. The dataset
contains information about potential borrowers and the task
is to predict whether or not an individual will default on their
debt. We construct a distribution map by strategically ma-
nipulating individuals features in response to the deployed
classifier (Hardt et al., 2016a). Details are given in A.6.

We train two logistic regression models using RRM and
RDRO. The magnitude of the distribution shift is controlled
by a parameter, ϵ. The larger the value of ϵ, the larger
the distribution shift. The ϵ-sensitivity condition of the
distribution map is thus only satisfied for small values of ϵ.

Figures 1 and 2 contain the distance between the learned pa-
rameters of the model on successive iterates. A distance of
zero means that the model has converged to a performatively
stable point. These figures show us RRM and RDRO exhibit
similar convergence behaviour. Both RRM and RDRO con-
verge for ϵ = 0.01, and RDRO also converges for ϵ = 1.0.
Both RRM and RDRO converge to small neighbourhoods
for ϵ = 10, while neither converge for ϵ = 100. This result
empirically supports our theoretical work, suggesting that
RRM and RDRO exhibit similar convergence behaviour.

The credit dataset does not contain any demographic in-
formation, so to investigate the fairness properties of the

fixed points resulting from RRM and RDRO we generate
synthetic data, sampled from two multivariate normal dis-
tributions with different means. 80% of the data is sampled
from one distribution and 20% from the other. We refer to
the majority sub-probability distribution as group A and the
minority distribution as group B. Data from each individual
distribution is linearly separable, but the combined distribu-
tion is not, meaning that a linear classifier must trade-off
performance between the two subgroups.

We again implement a strategic manipulation distribution
map and train models using RRM and RDRO for 30 iter-
ations. The accuracy of the models for the values of ϵ for
which we observe convergence are given in Tables 1 and 2.
We can see that RRM converges to a performatively stable
model that achieves high accuracy on the majority group,
but performs poorly on the minority group. RDRO on the
other hand, results in models that perform similarly across
both subgroups in the data. Further details are provided in
A.6.

ERM Performative Accuracy
Group ϵ = 0.01 ϵ = 0.25 ϵ = 0.5

A 0.893 0.896 0.898
B 0.540 0.540 0.540

All Data 0.834 0.837 0.838

Table 1. Accuracy by Group for ERM after 30 iterations.

DRO Performative Accuracy
Group ϵ = 0.01 ϵ = 0.25 ϵ = 0.5

A 0.687 0.710 0.738
B 0.670 0.660 0.660

All Data 0.684 0.701 0.725

Table 2. Accuracy by Group for DRO after 30 iterations.

5. Conclusion
Performative prediction offers a rigorous framework in
which to reason about decision making in dynamic environ-
ments. Existing theory for performative prediction had only
been developed for models trained with ERM objectives,
however, which is liable to result in models that discriminate
against minority groups.

We extend the performative prediction framework to DRO
and prove a convergence result for RDRO. We also investi-
gate RRM and RDRO empirically and find that while they
exhibit similar convergence behaviour, RRM converges to
fixed points that perform well on a majority subgroup, but
poorly on a minority subgroup, whereas RDRO converges
to models which succsefully balance performance across
majority and minority subgroups.
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A. Appendix
A.1. Related Work

The two most influential areas of research for this work are performative prediction and distributionally robust optimization,
and the papers most important for this work are (Perdomo et al., 2020) and (Duchi & Namkoong, 2021). Perdomo et al.
develop the performative prediction framework, while Duchi and Namkoong give a thorough summary of distributionally
robust optimization and explain its potential application to fairness concerns in machine learning.

Following the publication of Performative Prediction (Perdomo et al., 2020), there have been a number of papers which
have further explored performative prediction and extended some of the results from the original paper. For instance,
(Mendler-Dünner et al., 2020) prove results for stochastic optimization in performative prediction, (Miller et al.) prove new
results relating performatively stable points to performatively optimal points, (Brown et al., 2020) attempt to move toward
sequential games for performative prediction by adding a notion of state to the performative prediction problem, and (Dong
& Ratliff, 2021) approach performative prediction from a dynamical systems perspective allowing a move away from strict
contraction mappings when examining convergence to performatively stable models.

Distributionally robust optimization is an older area of research as compared to performative prediction, but it has only
recently received more attention within the machine learning community, largely due to work by Hongseook Namkoong and
John Duchi (Namkoong & Duchi, 2017; Duchi et al., 2020; Jeong & Namkoong, 2020). Areas such as finance, where robust
optimization is important as rare events have the potential to be catastrophic for a portfolio, have seen research on robust
optimization for decades. See (Ben-Tal et al., 2009) for a survey. (Ben-Tal et al., 2013) (Shapiro, 2017) provide rigorous
mathematical treatments of DRO with f -divergence balls.

A number of recent papers have also attempted to better understand fairness in machine learning over time, albeit not within
the performative prediction framework. Closely related to performative prediction, strategic classification (Hardt et al.,
2016a) models the prediction problem as an adversarial game where individuals manipulate their features in response to
deployed models. Recent work (Milli et al., 2019; Hu et al., 2019) has examined how strategic classification interacts
with fairness concerns. Strategic classification is an interesting problem setting, but is not as general as performative
prediction and only captures scenarios that can rightly be modelled as adversarial games. (D’Amour et al., 2020) on the other
hand, approach long-term fairness questions from a purely empirical perspective and use simulation studies to understand
the long-term dynamics of algorithmic choices on populations in a variety of scenarios designed to reflect real-world
applications. This approach is interesting, but the lack of theoretical framework limits their ability to generalize beyond
specific simulations.

Finally, the work most closely related to this paper, (Hashimoto et al., 2018), examines the impact of repeatedly minimizing
loss and deploying a model using empirical risk minimization and distributionally robust optimization on a population that
changes as a function of the loss incurred. This work, however, does not fit into the performative prediction framework and
applies only to a specific scenario in which individuals arrive according to a Poisson process and depart as a function of the
loss. This research aims to extend this work by combining DRO and performative prediction in order to leverage the known
results in both areas to provide a more general understanding of how DRO can impact long-term fairness.

A.2. Distributionally Robust Optimization

The notation Q≪ P0 means that Q is absolutely continuous with respect to P0
2. An f -divergence, Df (Q||P ), is a function

that measures the difference between two probability distributions Q and P , although it is not a metric. There are a variety
of different f -divergences, but their general definition is as follows (Renyi, 1961; Csiszár & Shields, 2004; Csiszar, 1967).

Df (Q||P ) :=
∫
f(dQdP )dP where f is a convex function such that f(1) = 0. If Q and P are absolutely continuous with

respect to a reference distribution µ, then their probability densities q and p satisfy dP = p and dQ = q and the f -divergence
can be written as

Df (Q||P ) =

∫
f(

q(x)

p(x)
)dµ(x).

Some examples of f -divergences are KL-divergence (f(t) = t log t), Pearson χ2-divergence (f(t) = (t−1)2, t2−1, t2− t),

2If two measures, µ and ν, are on the same measure space (X ,A), µ is said to be absolutely continuous with respect to ν if µ(A) = 0
for every set A for which ν(A) = 0.
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and total variation distance (f(t) = 1
2 |t − 1|). An f -divergence ball centred at P of radius ρ is a set that contains all

probability distributions whose f -divergence is within ρ of P . For example, {Q : Df (Q||P0) ≤ ρ} is an f -divergence ball
that contains all probability distributions Q that are within ρ f -divergence distance from P0. This is analogous to the notion
of an ϵ-ball surrounding a vector in a vector space.

The distributionally robust problem therefore, is to find a set of parameters, θ ∈ Θ, that minimize the worst case expected
loss of all probability distributions Q that are within the f -divergence ball of radius ρ of our data generating distribution.
This differs from ERM in that we do not seek to minimize the expected loss over our data generating distribution, but instead
seek to minimize the worst case expected loss over a set of probability distributions nearby our data generating distribution.

As the name suggests, learning parameters that minimize the distributionally robust risk gives us a model that is robust to
changes in the data generating distribution. Traditional risk minimization will return a model that minimizes risk for the data
generating distribution, but offers no performance guarantees when that distribution changes, and can result in models that
are brittle and do not perform well on out of distribution (OOD) examples. DRO, on the other hand, is a more conservative
procedure that minimizes worst-case risk and should thus be robust to changes to the probability generating distribution that
lie within the f -divergence ball of radius ρ.

As with traditional risk minimization, we do not have access to the theoretical data generating distribution. Instead, we solve
the distributionally robust problem via the plug-in estimator

θ̂n ∈ argmin
θ∈Θ

{
Rf (θ, P̂n) := sup

Q≪P̂n

{EQ[ℓ(θ;X)] : Df (Q||P̂n) ≤ ρ}

}

where P̂n is the empirical measure on Xi ∼iid P0. Duchi and Namkoong prove convergence guarantees and rates for the
plug-in estimator along with some asymptotic results such as showing consistency of the estimator (Duchi & Namkoong,
2021).

It is not necessarily clear from the discussion so far what DRO has to do with fairness concerns in machine learning, but
DRO in fact has characteristics that are very desirable for addressing issues of fairness and discrimination in learning
algorithms. We will explain this shortly, but first we introduce dual reformulations of the distributionally robust problem as
it provides some intuition as to the connection with fairness concerns.

The following theorem comes from (Shapiro, 2017). Let f∗(s) := supt{st− f(t)} be the Fenchel conjugate.

Theorem A.1. ([(Shapiro, 2017), Section 3.2]). Let P be a probability measure on (X ,A) and ρ > 0. Then

Rf (θ;P ) = inf
λ≥0,η∈R

{
EP

[
λf∗

(
ℓ(θ;X)− η

λ

)]
+ λρ+ η

}
for all θ. Moreover, if the supremum on the left hand side is finite, there are finite λ(θ) ≥ 0 and η(θ) ∈ R attaining the
infimum on the right hand side.

Additionally, (Duchi & Namkoong, 2021) provide a simplified version of this dual formulation for the Cressie-Read family
of f -divergences, obtained by minimizing out λ > 0 from Theorem A.1.

Theorem A.2. ([(Duchi & Namkoong, 2021), Section 2]). For any probability P on (X ,A), k ∈ (1,∞), k∗ = k/(k − 1),
any ρ > 0, and ck(ρ) = (1 + k(k − 1)ρ)1/k, we have for all θ ∈ Θ

Rf (θ;P ) = inf
η∈R

{
ck(ρ)EP

[
(ℓ(θ;X)− η)k∗

+

]1/k∗
+ η

}

The above formulations are jointly convex in (θ, λ, η) and (θ, η), respectively, for convex losses, ℓ(θ;X), making them
amenable to techniques from convex optimization such as interior point methods (Boyd & Vandenberghe, 2004).

The Cressie-Read family of f -divergences are parameterized by k ∈ (−∞,∞) \ {0, 1}, k∗ = k
k−1 , with

fk(t) :=
tk − kt+ k − 1

k(k − 1)
and f∗

k (s) :=
1

k

[
((k − 1)s+ 1)k∗

+ − 1
]
.
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Issues of fairness arise in machine learning when an algorithm treats different demographic groups in a disparate fashion.
As outlined above, this often means that algorithmic performance varies across different demographic groups. If this occurs,
it is almost certainly the case that there exist distinct probability distributions over the demographic groups because if
all demographic groups were characterized the the same probability distribution, classification algorithms should exhibit
uniform performance across demographic groups.

This realization makes it easy to see why ERM is likely to discriminate, particularly against minority groups. ERM treats
the loss on each data point equally, thus, if there is a majority and minority probability distribution and a learning algorithm
must balance performance on these groups, an ERM objective is likely to result in a model that performs better on the
majority group and worse on the minority group. It is exactly this type of problem that DRO is designed to resolve.

Unlike ERM, DRO does not equally weight each data point, but instead up-weights data points on which the model is
achieving high loss. This means that the model should achieve somewhat uniform performance on individuals across
demographic groups. This can be seen by looking at the dual formulation in Theorem A.2. The DRO objective only
considers losses above the optimal dual variable η∗(θ) and these losses are up-weighted by the Lk∗(P )-norm. Losses that
are less than the optimal dual variable are set to zero in the objective. Another way of saying this is that the DRO objective
is equivalent to optimizing the tail-performance of a model (Duchi & Namkoong, 2021).

If DRO performs poorly on a subset of the data that is correlated with a distinct demographic group, these losses will be
up-weighted by the dual formulation of the distributionally robust objective, pushing the model to improve performance on
this subset. DRO does not offer any guarantees of uniform performance across demographic groups, but as we increase the
value of ρ we will increase the loss incurred on “hard” regions of the data where the model performs poorly.

A.3. Performative Prediction

In supervised learning we assume that our data is sampled i.i.d. from an unknown data generating distribution and that our
model is then deployed to make predictions on data that follows this same distribution. In many scenarios, however, the very
act of making predictions influences the data on which we wish to make these predictions. That is to say, our models are
performative and instead of passively describing the world and making predictions about it, they actually induce change in
the world.

A simple example of this is predictive policing. In predictive policing we train a model to predict where crimes are likely to
occur based on historical data and then deploy more resources to areas where the model predicts crimes are more likely to
occur. The increased police patrols and surveillance results in more crimes being detected which might further increase the
perceived crime rate in those areas. If this data is then used for future predictions it will result in a shifted distribution of the
data as a result of the predictions of the previous model. Another example of performativity is an algorithm that weights
different elements of a student’s CV such as SAT scores and GPA in order to make college admissions decisions. If the
algorithm heavily weights SAT scores, over time it will become apparent to applicants that SAT scores are very important
and they will dedicate more resources to improving SAT scores, thus changing the distribution of the data on which the
algorithm is making predictions as a result of those very predictions.

Performative prediction is closely related to many other fields in machine learning including bandits, reinforcement learning,
strategic classification, causal inference, convex optimization, and game theory, but the precise notion and formalism for
performative prediction was only developed very recently in (Perdomo et al., 2020). We formally specify the performative
prediction problem now and contrast it with the supervised learning problem.

Assume we have a measure space (Z,A) with Z a random element of Z and D the data generating distribution on this
space. Let Θ ⊂ Rd be the parameter (model) space and ℓ : Θ×Z → R be a loss function. The supervised learning problem
is to minimize the the objective over this distribution. In the case of risk minimization the objective is the expected loss,
ℓ(Z; θ) with respect to D.

R(θ) = EZ∼D[ℓ(Z; θ)].

In contrast to this, performative prediction involves making predictions on a distribution that has been shifted as a result of
deploying the model, D(θ). We refer to D(θ) as the distribution map. The concept that captures this notion of risk is known
as performative risk and is formalized as follows:

PR(θ) = EZ∼D(θ)[ℓ(Z; θ)].

The difference between this and the supervised learning problem is that expected loss is now taken with respect to the
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induced distribution rather than the data generating distribution.

The notion of what constitutes a good model is different in supervised learning and performative prediction. In supervised
learning the task is simpler - minimize the risk on the data generating distribution. In performative prediction however, we
now need to consider how to minimize risk on a distribution that is different from that which generated our training data,
and is in fact a function of whatever model we deploy. To capture these notions, (Perdomo et al., 2020) define performative
optimality and performative stability.

Definition A.3. (performative optimality) A model fθPO
is performatively optimal if the following relationship holds:

θPO = argmin
θ∈Θ

EZ∼D(θ)[ℓ(Z; θ)].

Equivalently, θPO = argminθ∈Θ PR(θ) where PR(θ) is the performative risk as defined above.

A performatively optimal point is a minimizer of the performative risk. An alternative solution concept is referred to as
performative stability.

Definition A.4. (performative stability) A model fθPS
is performatively stable if the following relationship holds:

θPS = argmin
θ∈Θ

EZ∼D(θPS)[ℓ(Z; θ)].

Define DPR(θ, θ′) := EZ∼D(θ)[ℓ(Z; θ′)] as the decoupled performative risk; then θPS = argminθ∈Θ DPR(θPS , θ).

A performatively stable model is not necessarily a minimizer of the performative risk, but it is optimal on the distribution it
induces. Hence, if you have performative stability there is no need to retrain a model to cope with the induced distribution
drift. Performative optimality and performative stability are distinct concepts and a performatively optimal point is not
necessarily performatively stable, and vice versa. As explained in (Perdomo et al., 2020), performatively stable models are
fixed points of risk minimization. In game theoretic terms, we can consider performative prediction as a game in which one
player deploys a model, θ, and the environment responds with some distribution map, D(θ). If D(θ) is a best response, then
a performatively optimal point corresponds to a Stackelberg equilibrium, whereas a performatively stable point corresponds
to a Nash equilibrium. From game theory we know that except in special cases (e.g. finite zero-sum games), Nash equilibria
and Stackelberg equilibria do not necessarily coincide (Kroer, 2022).

Performative prediction presents a special case of learning under distribution drift, where the distribution drift is a function
of the model deployed. A common approach in supervised learning under distribution drift is to retrain a model on newly
collected data. While this does not directly minimize performative risk, it is a potentially reasonable solution in a variety of
scenarios. (Perdomo et al., 2020) prove theorems under which repeated risk minimization and repeated gradient descent
converge to performatively stable models. We present these findings in detail here as they are relevant for our work.

Definition A.5. (ϵ-sensitivity) We say that a distribution map D(·) is ϵ-sensitive if for all θ, θ′ ∈ Θ:

W1 (D(θ),D(θ′)) ≤ ϵ||θ − θ′||2,

where W1 denotes the Wasserstein-1 distance.

We also make assumptions on the loss function ℓ(z; θ). Let Z := ∪θ∈Θsupp(D(θ)).
Definition A.6. (joint smoothness) We say that a loss function ℓ(z; θ) is β-jointly smooth if the gradient∇θ is β-Lipschitz
in θ and z, that is

||∇θℓ(z; θ)−∇θℓ(z; θ
′)||2 ≤ β||θ − θ′||2, ||∇θℓ(z; θ)−∇θℓ(z

′; θ)||2 ≤ β||z − z′||2,

for all θ, θ′ ∈ Θ and z, z′ ∈ Z
Definition A.7. (strong convexity) We say that a loss function ℓ(z; θ) is γ-strongly convex if

ℓ(z; θ) ≥ ℓ(z; θ′) +∇θℓ(z; θ
′)T (θ − θ′) +

γ

2
||θ − θ′||22,

for all θ, θ′ ∈ Θ and z ∈ Z . If γ = 0 this condition is equivalent to convexity.
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Definition A.8. (repeated risk minimization) Repeated risk minimization (RRM) refers to the procedure where, starting
from an initial model fθ0 , we perform the following sequence of updates for every t ≥ 0:

θt+1 = G(θt) := argmin
θ∈Θ

EZ∼D(θt)[ℓ(Z; θ)].

Definitions A.5, A.6, and A.7 are assumptions on the loss and distribution map that are required for Theorem 3.5 in (Perdomo
et al., 2020). We state that theorem now.

Theorem A.9. ([(Perdomo et al., 2020), Theorem 3.5]) Suppose that the loss ℓ(z; θ) is β-jointly smooth and γ-strongly
convex. If the distribution map D(·) is ϵ-sensitive, then the following statements are true:

1. ||G(θ)−G(θ′)||2 ≤ ϵβγ ||θ − θ′||2, for all θ, θ′ ∈ Θ

2. If ϵ < γ
β , the iterates θt of RRM converge to a uniquely performatively stable point θPS at a linear rate: ||θt−θPS ||2 ≤

δ for t ≥
(
1− ϵβγ

)−1

log
(

||θ0−θPS ||2
δ

)
This theorem says that with the appropriate smoothness and convexity conditions satisfied on the loss and distribution map,
repeatedly retraining a model by minimizing risk will converge to a unique performatively stable model at a linear rate. The
proof proceeds by demonstrating that under the assumptions stated in Theorem A.9, the RRM operator is a contraction
mapping. (Perdomo et al., 2020) also show that without any of ϵ-sensitivty, β-joint smoothness, or γ-strong convexity one
can produce examples that do not converge to a fixed point. Hence these assumptions are necessary conditions to guarantee
convergence of RRM to a performatively stable model in the general case.

A.4. Definitions and Proof for Distributionally Robust Performative Prediction

We begin by redefining performative risk and performatively optimal and stable models in terms of a robust objective. In the
following D(θ) is a distribution map and Df (Q||D(θ)) is an f -divergence ball of radius ρ.

Definition A.10. (robust performative risk) The robust performative risk of a model, θ, is

RPR(θ) = sup
Q≪D(θ)

{EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θ)) ≤ ρ}.

Robust performative risk differs from performative risk in that the induced distribution, D(θ), is now the centre of an
f -divergence ball over which a supremum of the expected loss is taken.

Definition A.11. (robust performative optimality) A model fθPO
is robustly performatively optimal if the following

relationship holds:
θPO = argmin

θ∈Θ
sup

Q≪D(θ)

{EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θ)) ≤ ρ}.

Equivalently, θPO = argminθ∈Θ RPR(θ) where RPR(θ) is the robust performative risk as defined above.

Definition A.12. (robust performative stability) A model fθPS
is robustly performatively stable if the following relationship

holds:
θPS = argmin

θ∈Θ
sup

Q≪D(θPS)

{EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θPS)) ≤ ρ}.

Define RDPR(θ, θ′) := supQ≪D(θ){EZ∼Q[ℓ(Z; θ′)] : Df (Q||D(θ)) ≤ ρ} as the robust decoupled performative risk;
then θPS = argminθ∈Θ RDPR(θPS , θ).

We discussed earlier that previous work has shown that repeated risk minimization converges to a performatively stable
model under certain assumptions on the loss and distribution map (Perdomo et al., 2020). We can analogously define
repeated distributionally robust optimization as follows.

Definition A.13. (repeated distributionally robust optimization) Repeated distributionally robust optimization (RDRO)
refers to the procedure where, starting from an initial model fθ0 , we perform the following sequence of updates for every
t ≥ 0:

θt+1 = G(θt) := argmin
θ∈Θ

sup
Q≪D(θt)

{EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θt)) ≤ ρ}.
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As with RRM, this is an iterative procedure where we optimize the distributionally robust objective at each time step t.
While it is only a small departure from RRM conceptually, the DRO objective has fundamentally different mathematical
properties than risk minimization making it unclear whether RDRO and RRM should exhibit similar behaviour.

We now re-state and prove our convergence theorem for RDRO. The proof of this theorem is a straightforward adaptation of
the proof in (Perdomo et al., 2020). We first introduce two lemmas used in (Perdomo et al., 2020) which we will make use
of in our proof.

Lemma A.14. (First-order optimality condition) Let f be convex and let Ω be a closed convex set on which f is differentiable,
then

x∗ ∈ argmin
x∈Ω

f(x)

if and only if
∇f(x∗)

T (y − x∗) ≥ 0,∀y ∈ Ω.

Lemma A.15. (Kantorovich-Rubinstein) A distribution map D(·) is robustly ϵ-sensitive if and only if for all θ, θ′ ∈ Θ:

sup
{∣∣EZ∼D∗(θ)[g(Z)]− EZ∼D∗(θ′)[g(Z)]

∣∣ : g : RP → R, g 1-Lipschitz
}
≤ ωϵ||θ − θ′||2

where D∗(θ) = argmax
Q:Df (Q||D(θ))≤ρ

EZ∼Q[ℓ(Z; θ)].

We now state our theorem.

Theorem A.16. Suppose that the distributionally robust objective satisfies definitions 3.1 and 3.2, and that the distribution
map satisfies definition 3.3. Then the following statements are true:

1. ||G(θ)−G(θ′)||2 ≤ ωϵβγ ||θ − θ′||2, for all θ, θ′ ∈ Θ

2. If ωϵ < γ
β , the iterates θt of RDRO converge to a unique robustly performatively stable point θPS at a linear rate:

||θt − θPS ||2 ≤ δ for t ≥
(
1− ωϵβγ

)−1

log
(

||θ0−θPS ||2
δ

)
.

Note that G(θ) := argminθ∈Θ supQ≪D(θ){EZ∼Q[ℓ(Z; θ)] : Df (Q||D(θ)) ≤ ρ}.

Proof. Fix θ, θ′ ∈ Θ. Let
D∗(θ) = argmax

Q:Df (Q||D(θ))≤ρ

EZ∼Q[ℓ(Z; θ)].

That is, D∗(θ) is the distribution within the f -divergence ball centred at D(θ) with radius ρ that maximizes the expected
loss. Further, let

f(ξ) = EZ∼D∗(θ)[ℓ(Z; ξ)] and f ′(ξ) = EZ∼D∗(θ′)[ℓ(Z; ξ)].

That is, f(ξ) and f ′(ξ) are the worst case losses for f -divergence balls centred at θ and θ′ respectively with radius ρ.

We now use Definition 3.2 and Definition 3.1 to ensure that f is γ-strongly convex and that the gradient of f exists and is
β-jointly smooth. With our assumption of γ-strong convexity of f , G(θ) is the unique minimizer of f(x) and we have the
following two inequalities

f(G(θ))− f(G(θ′)) ≥ (G(θ)−G(θ′))T∇f(G(θ′)) +
γ

2
||G(θ)−G(θ′)||22 (1)

f(G(θ′))− f(G(θ)) ≥ γ

2
||G(θ)−G(θ′)||22 (2)

Inequality (1) comes from the definition of γ-strong convexity and inequality (2) comes from γ-strong convexity and the
first-order optimality condition since Lemma A.14 tells us (G(θ′)−G(θ))T∇f(G(θ)) ≥ 0 because G(θ) is the minimizer
of f(x).

Using these two inequalities we can derive the following

−γ||G(θ)−G(θ′)||22 ≥ f(G(θ))− f(G(θ′))− γ

2
||G(θ)−G(θ′)||22

≥ (G(θ)−G(θ′))T∇f(G(θ′))
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where we get the first inequality from (2) and the second from (1).

Now, using β-joint smoothness in z and Cauchy-Schwarz we get

||(G(θ)−G(θ′))T∇θℓ(z;G(θ′))− (G(θ)−G(θ′))T∇θℓ(z
′;G(θ′))||2

≤ ||G(θ)−G(θ′)||2β||z − z′||2
That is, (G(θ) − G(θ′))T∇θℓ(z;G(θ′) is ||G(θ) − G(θ′)||2β-Lipschitz in z. We will now use this and Kantorovich-
Rubinstein (Lemma A.15). Let

g(z) =
(G(θ)−G(θ′))T∇θℓ(z;G(θ′))

||G(θ)−G(θ′)||2β

The function g(z) is 1-Lipschitz in z because we have just divided (G(θ)−G(θ′))T∇θℓ(z;G(θ′)) by its Lipschitz constant.
From Lemma A.15 and Definition 3.3 we have the following, with g(Z) as defined above

EZ∼D∗(θ)[g(Z)]− EZ∼D∗(θ′)[g(Z)] ≤ ωϵ||θ − θ′||2
Using linearity of expectation and multiplying by ||G(θ)−G(θ′)||2β we get the following

(G(θ)−G(θ′))T∇f(G(θ′))− (G(θ)−G(θ′))T∇f ′(G(θ′))

≥ −ωϵβ||G(θ)−G(θ′)||2||θ − θ′||2
Now again using Lemma A.14, we have (G(θ) − G(θ′))T∇f ′(G(θ′)) ≥ 0, hence (G(θ) − G(θ′))T∇f(G(θ′)) ≥
ωϵβ||G(θ)−G(θ′)||2||θ−θ′||2. From our work above we showed that−γ||G(θ)−G(θ′)||22 ≥ (G(θ)−G(θ′))T∇f(G(θ′)).
Putting this all together we get

−γ||G(θ)−G(θ′)||22 ≥ −ωϵβ||G(θ)−G(θ′)||2||θ − θ′||2
We rearrange the above to get

||G(θ)−G(θ′)||2 ≤ ωϵ
β

γ
||θ − θ′||2

which proves claim (1) of the theorem.

Claim (2) follows easily. We note that θt = G(θt−1) from the definition of RDRO and G(θPS) = θPS by the definition of
robust performative stability. Using the result of claim (1) we get

||θt − θPS ||2 ≤ ωϵ
β

γ
||θt−1 − θPS ||2 ≤

(
ωϵ

β

γ

)t

||θ0 − θPS ||2

Now we set (
ωϵ

β

γ

)t

||θ0 − θPS ||2 ≤ δ

and solve for t. (
ωϵ

β

γ

)t

||θ0 − θPS ||2 ≤ δ

t log

(
ωϵ

β

γ

)
+ log(||θ0 − θPS ||2) ≤ log(δ)

t log

(
ωϵ

β

γ

)
≤ log(δ)− log(||θ0 − θPS ||2)

t log

(
ωϵ

β

γ

)
≤ t

(
ωϵ

β

γ
− 1

)
≤ log(δ)− log(||θ0 − θPS ||2)

t ≥ (log(δ)− log(||θ0 − θPS ||2))
(
ωϵ

β

γ
− 1

)−1

t ≥
(
1− ωϵ

β

γ

)−1

log

(
||θ0 − θPS ||2

δ

)
Note that this theorem is essentially just an application of the Banach fixed point theorem as ωϵ < γ

β =⇒ ωϵβγ < 1.
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While this proof provides us with conditions under which RDRO converges, it is somewhat unsatisfying as it leaves as an
open question what is required for Definitions 3.1, 3.2, and 3.3 to be true. Unlike for performative prediction with risk
minimization, making assumptions on our loss function does not guarantee that the distributionally robust objective will
share those properties. In order to have smoothness of our objective and also robust ϵ-sensitivity of the distribution map we
require some sort of stability or regularity of the worst case distributions as the centre of the f -divergence ball moves as a
function of θ.

The robust ϵ-sensitivity condition could possibly be equivalently expressed as a smoothness condition for the f -divergence
ball surrounding the data generating distribution. Further exploration of these questions would likely yield further under-
standing of the distributionally objective, even outside of the context of performative prediction.

It could also be possible that robust β-joint smoothness is not a necessary condition for convergence of RDRO and that
a convergence proof may be possible working with subgradients or directional derivatives, but if this is the case it would
necessitate a different, and likely more involved, proof technique than the one used here. An alternative approach would
also be to work with the dual reformulation of the DRO problem given in Theorem A.2 or to use an alternative probability
distance measure rather than f -divergence balls that may be more amenable to this type of analysis.

These approaches come with their own complications, however, and likely require answering similar questions. We believe
these are interesting questions worthy of further research, but their investigation is beyond the scope of this work. Instead,
we present empirical work which demonstrates the convergence of RDRO in a variety of scenarios.

A.5. Implementation

We provide a brief explanation of the implementation details for ERM and DRO. Both risk minimization and distributionally
robust optimization require access to the data generating distribution, i.e. infinite data, which is obviously impossible, so
we perform empirical risk minimization and utilize the plug-in estimator for distributionally robust optimization instead.
Further, for DRO we make use of the dual formulation (Theorem A.2) and perform optimization on this objective rather than
working with the primal form. Following (Duchi & Namkoong, 2021) and (Hashimoto et al., 2018), we use χ2-divergence
balls in our implementation.

In all of our experiments we use linear models trained with gradient descent. We use a fixed step-size and a fixed number of
epochs for training. The logistic regression utilizes an L2-regularized cross-entropy loss function.

The dual formulation of the distributionally robust objective allows for a simple training procedure where we treat the dual
variable η as a hyperparameter. Recall that for convex losses, ℓ(θ;Z), the dual formulation is jointly convex in (θ, η). The
training procedure is thus as follows, for a given η, compute the approximate minimizer θ̂η

minimize
θ∈Θ

E(ℓ(θ;Z)− η)2+.

Because the dual is convex in η we can use binary search to find the optimal dual variable η∗. The loss (ℓ(θ;Z)− η)2+ is
merely the ReLu function applied to the usual loss with η subtracted and then squared which allows us to train models
using gradient descent methods. Hence, using binary search we train models with different values of η until we find the
optimal η∗. The optimal value, η∗, depends on the data and also the radius of our f -divergence ball, ρ. The value of ρ is a
hyperparameter that we must specify before training our model.

A.6. Experiments

A.6.1. RRM AND RDRO FOR CREDIT DATASET

Our first experiment reproduces the experimental work from (Perdomo et al., 2020). We use a dataset from a Kaggle
competition titled Give Me Some Credit. The dataset contains relevant information for predicting credit scores. The target
variable is a binary variable indicating whether or not an individual has experienced financial distress in the past two years.
The original dataset contains historical information for 250,000 borrowers.

Following (Perdomo et al., 2020) we balance the dataset to contain an equal number of positive and negative cases for the
target variable and normalize predictor variables to have a mean of zero and variance of one. The reduced dataset contains
18,358 entries.

We train L2-regularized logistic regression models on the data for both ERM and DRO. Both models are trained with
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stochastic gradient descent with a fixed step-size of α = 0.03 for 5000 epochs. The step-size and number of epochs
were chosen empirically to approximately replicate performance from (Perdomo et al., 2020) on the base distribution.
Additionally, a fixed value of ρ was chosen as a radius of the χ2-divergence ball for DRO. The value of ρ was chosen so
that the accuracy of the DRO model on the full dataset was significantly, but not drastically, different than that of the ERM
model.

In order to add a performative element to the prediction problem, we identify 3 of the 10 features as strategic features which
will be altered as a function of the parameters of our model. Strategic classification is a particular instance of performative
prediction in which individuals adversarially adjust their features to maximize the likelihood of classification to the positive
class. Strategic classification has been explored in relation to fairness concerns in previous work (Hardt et al., 2016a;
Bruckner et al., 2012; Miller et al., 2020; Milli et al., 2019; D’Amour et al., 2020; Hu et al., 2019).

As described in (Perdomo et al., 2020) and (Hardt et al., 2016a), we assume individuals have linear utilities u(θ, x) = −⟨θ, x⟩
and quadratic costs c(x′, x) = 1

2ϵ ||x
′ − x||22. The constant ϵ controls the cost individuals incur by altering their features.

Individuals thus pay a cost to manipulate their features in order to minimize the likelihood of the model predicting that they
will default on their loan, but are unable to change the true outcome, y ∈ {0, 1}, of whether or not they default. Given linear
utilities and quadratic costs as described here, the individuals’ best response is to manipulate their features as

x′
S = xS − ϵθS ,

where xS , x
′
S R|S| and |S| is the number of strategic features. The explanation of why this distribution map is ϵ-sensitive

can be found in (Perdomo et al., 2020).

The procedure for updating the data according to the distribution map for strategic classification is explained in the box below.

Input: Base distribution P , a classifier fθ, a cost function c, a utility function u. Sampling procedure for D(θ):

1. Sample (x, y) ∼ P

2. Compute best response xBR ← argmaxx′ u(x′, θ)− c(x′, x)

3. Output sample (xBR, y)

Using a logistic regression classifier and the strategic classification distribution map sampling procedure outlined
above, we run ERM and DRO for 30 iterations on our dataset with values of ϵ ∈ {0.1, 1, 10, 100}. We observe similar
convergence behaviour for both ERM and DRO. As the value of ϵ grows, the inequality ϵ < γ

β no longer holds, meaning that
the conditions of Theorems A.9 and 3.4 are not satisfied and we do not necessarily have a contraction mapping. We plot
the normalized distance between values of θ for successive iterations of ERM and DRO in Figures 1 and 2. The distance
between iterates is calculated as

1

||θS ||2
· ||θt+1 − θt||2,

where θS is the value of θ0 on the strategic features.

A.6.2. BUILDING INTUITION THROUGH SIMPLE EXAMPLES

We now investigate the convergence of ERM and DRO on simple synthetic datasets to build intuition for the behaviour of
the two algorithms. We move away from the assumptions required for our general theoretical guarantees for convergence to
a fixed point and experiment with distribution maps that are not necessarily ϵ-sensitive. We begin with a regression problem
and then investigate a classification problem.

Regression

We start with a simple mean prediction task with data sampled from a mixture of two univariate Gaussians, XA ∼ N (µA, σ
2)

and XB ∼ N (µB , σ
2). 80% of the data is sampled from XA and 20% from XB , i.e. X = 0.2XA + 0.8XB . We train a

linear regression model using gradient descent with backtracking line search to predict the mean of the data. We initialize
our data with values µA = 4, µB = 4, and σ2 = 0.01. We choose a small value of σ2 so that the variance and finite samples
have only a small impact on the convergence behaviour of ERM and DRO. We select an f -divergence ball radius of ρ = 4
for DRO.
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Figure 3. Learned values of θ for ERM. Figure 4. Learned values of θ for DRO.

We use θ to denote the learned parameter of the model, µ to denote the true mean of the data generating distribution, and µA

and µB to denote the true means of the XA and XB . In other words, θ = µ̂ is the estimated mean from the model. Where
necessary, we indicate with subscripts ERM and DRO to indicate which model we are referring to.

We investigate three different distribution maps which we call D0, D1, and D2. For each map the means of the normal
distributions from which we sample are adjusted as a function of θ. Hence, the induced distribution is

Di(θ) = 0.2N (DA
i (θ), σ

2) + 0.8N (DB
i (θ), σ2).

These distribution maps were chosen because they are simple to understand, but reveal important differences in the way
ERM and DRO behave when their predictions alter the distribution on which they are learning. The distribution maps are
specified in Table 3.

D0(·) D1(·) D2(·)
DA

0 (θ) = N (θ, σ2) DA
1 (θ) = N (µA, σ

2) DA
2 (θ) = N (2θ, σ2)

DB
0 (θ) = N ( θ2 , σ

2) DB
1 (θ) = N ( θ2 , σ

2) DB
2 (θ) = N ( θ2 , σ

2)

Table 3. Distribution maps for mean-prediction experiment.

The distribution map determines the evolution of the distribution over the data at each iteration of deploying and learning
our model, which in turn changes the learned θt = µ̂t. Despite starting from the same initial distribution in each case, the
induced distributions vary widely. This demonstrates the importance of performativity and illustrates why a static supervised
learning framework fails to adequately capture the complex dynamics of prediction problems which involve performativity.

We run the experiment for 50 iterations, where one iteration involves training a model on data sampled from the current
distribution and then updating the distribution via the distribution map. We summarize the evolution of the learned parameter
θt over time for both ERM and DRO in Figures 3 and 4. Given the simplicity of the learning problem, the learned values
of θ closely approximate true mean of the distribution, µ, over time. The approximate values to which ERM and DRO
converge are given in Table 4.

It is interesting to note that even with this simple mean prediction task we observe significant differences in the behaviour
of ERM and DRO over time. For all three distribution maps we observe ERM’s tendency to focus on the majority group
over the minority group. Recall that 20% of the data is sampled from XA and 80% from XB so we refer to group A as the
minority group and group B as the majority group. For D0, ERM quickly converges toward zero as group B’s mean evolves
as µB = θ

2 . Interestingly, however, it does not converge to zero, but instead remains fixed at approximately θ = 0.004 even
though θ = 0 is the performatively optimal value.

DRO displays similar behaviour for this distribution map, but does not converge as close to zero. As noted, performative
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Figure 5. Learned values of θ for ERM with D2. Figure 6. Learned values of θ for DRO with D2.

stability and performative optimality are distinct solution concepts, and performatively optimal points only coincide with
performatively stable points in specific settings.

Method D0(·) D1(·) D2(·)
ERM θERM = 0.004 θERM = 1.33 θERM = 0.008
DRO θDRO = 0.128 θDRO = 2.66 θDRO =∞

Table 4. Values to which θ converges for ERM and DRO.

The second distribution map, D1, reveals differences in ERM and DRO that are relevant for fairness. For D1, the mean of
the majority group again evolves as µB = θ

2 , but this time the minority group’s mean remains unchanged with µA = 4. As
ERM averages the loss over all data points, it converges to a predicted mean much closer to µB than to µA. DRO, on the
other hand, converges to a value that balances performance on prediction of the means of both minority and majority groups.
In fact the distance from the true means of group A and group B is almost identical.

|θDRO − µA| = |2.66− 4| = 1.34

|θDRO − µB | = |2.66− 1.33| = 1.33

ERM, however, is a much better predictor of the global mean of the data. This simple example illustrates a trade-off we can
expect between ERM and DRO in terms of fairness versus global performance.

µERM = 0.2µA + 0.8µB = (0.2)(4) + (0.8)(0.665) = 1.332

µDRO = 0.2µA + 0.8µB = (0.2)(4) + (0.8)(0.1.33) = 1.864

The final distribution map, D2, demonstrates that ERM and DRO can behave entirely differently under some circumstances.
For this distribution map ERM converges to a similar value to that under D0, that is θERM = 0.008. This makes some sense
intuitively as µA = 2θ whereas for D0 we had µA = θ. DRO, on the other hand, diverges with θDRO going to infinity. The
reason for this is that for the first iteration DRO learns a value of θDRO that is larger than 4. Similarly, for each successive
iteration the learned value of θDRO gets larger which in turn causes the true means of the data to grow as a function of the
learned θDRO. Interestingly, if you swap the majority and minority groups the behaviour of DRO remains nearly identical,
while ERM diverges at a faster rate than DRO. This again demonstrates how DRO treats minority and majority groups
similarly, while ERM learns a function that prioritizes performance on majority groups. We illustrate this in Figures 5 and 6

Classification

We now move to a classification task and analyze the behaviour of logistic regression classifiers trained using ERM and
DRO. The classification task is more complex than the simple mean prediction task, so for this experiment we analyze only
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the static supervised learning setting in order to reduce complexity and elucidate the relevant differences between ERM and
DRO.

Our data is generated from bivariate Gaussian distributions and the label, y, of a given data point is 1 if the sum of its features
are greater than the sum of the means of the two Gaussian distributions from which we draw samples and 0 otherwise. As
with the regression experiments, we have two subgroups within our data, A and B. We vary the proportion of samples from
each subgroup in the experiments. Precisely, the data generating process is as follows:

XA ∼ N (µµµA,ΣΣΣA)

XB ∼ N (µµµB ,ΣΣΣB)

X = cAXA + cBXB cA, cB ∈ (0, 1), and cA + cB = 1

where

µµµA =

[
µ1
A

µ2
A

]
, µµµB =

[
µ1
B

µ2
B

]
, ΣΣΣA =

[
σ1
A 0
0 σ2

A

]
, ΣΣΣB =

[
σ1
B 0
0 σ2

B

]
.

And for a data point, x = [x1
i , x

2
i ]

T , with i ∈ {A,B},

y =

{
0 if x1

i + x2
i ≤ µ1

i + µ2
i

1 if x1
i + x2

i > µ1
i + µ2

i

.

Hence, if µµµA ̸= µµµB , the data is not linearly separable and the logistic regression model must trade off performance across
the two subgroups. We provide scatter plots of samples from the data generating distribution below with µi

A = 1 and
µi
B = 0.7, σi

A = σi
B = 0.1 for i ∈ {0, 1}, and cA = 0.8, cB = 0.2. Figure 7 contains a sample of 360 data points coloured

by the value of their target variable, with crosses representing data points belonging to group B and circles representing data
points belonging to group A. Figure 8 contains a sample of 500 and 100 data points respectively from group A and group B
coloured by the value of their target variable.

In Figure 7 we can see that the data is not linearly separable, as some members of group B who belong to the positive
class have features that place them lower than the threshold for positive classification for group A. Although this dataset is
extremely simple, it is characterized by a feature that represents a central concern for fairness in machine learning, namely
that the conditional probability distributions, P (y|x), are significantly different for distinct subsets of the data. This example
is intended to represent a simplified abstract instance of a population with majority and minority subgroups in order to see
how the behaviour of ERM and DRO differ in this circumstance.

We generate three distinct datasets on which to train our algorithms, each made up of differing proportions of the two
subgroups A and B. Each dataset contains a sample of 10,000 data points, with samples distributed according the values of
cA and cB . The accuracy of the models on the three datasets is summarized in Tables 5 and 6 below. For both ERM and
DRO we use L2-regularized logistic regression trained with stochastic gradient descent. The step-size for all algorithms is
fixed at 0.05 and we train for 15,000 epochs.

Models trained with the distributionally robust objective have the additional complication that we must specify a value for
the radius of the χ2-divergence ball, i.e. ρ. The larger the value of ρ, the more we can expect a DRO model to differ from an
ERM model because as the χ2-divergence ball grows, the worst case distribution can be further and further from the data
generating distribution. Conversely, in the limit as ρ→ 0, we recover ERM as the χ2-divergence ball shrinks to contain
only the data generating distribution.

Choosing the value of ρ is a challenging decision, as the performance of a model varies significantly as ρ changes. If one
has access to demographic information, it is possible to conduct a grid search over possible ρ values in order to find a value
that results in a model with the desirable fairness properties. Doing this, however, largely defeats the purpose of DRO. As
explained earlier, a central advantage to using DRO rather than some fairness constrained optimization technique is that
DRO does not require access to demographic information. In this experiment we work directly with the dual formulation of
DRO and set η = 0.56. This value was chosen empirically to achieve relatively uniform accuracy across group A and group
B for an 80/20 split between the two subgroups. As the values of cA and cB change, we can see that the performance of
DRO changes for a given value of η and hence ρ, as η∗ depends on ρ.
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Figure 7. Sample of 360 data points from the data generating distribution with cA = 0.8 and cB = 0.2.

Figure 8. Sample of 600 data points from the data generating distribution with cA = 0.8 and cB = 0.2.
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Group [cA = 0.6, cB = 0.4] [cA = 0.8, cB = 0.2] [cA = 0.95, cB = 0.05]

A 0.797 0.907 0.966
B 0.701 0.652 0.592

All Data 0.759 0.856 0.948

Table 5. Accuracy by Group for ERM.

Group [cA = 0.6, cB = 0.4] [cA = 0.8, cB = 0.2] [cA = 0.95, cB = 0.05]

A 0.665 0.751 0.780
B 0.869 0.744 0.766

All Data 0.747 0.750 0.780

Table 6. Accuracy by Group for DRO.

We first examine the performance of ERM (Table 5). As the data is not linearly separable, ERM must learn a decision
boundary that trades off performance between the two subgroups. Because the ERM objective treats the loss on each data
point equally, the model learns a decision boundary that is more accurate for the majority group than for the minority group.
This discrepancy in accuracy of predictions worsens the smaller the majority group is. For instance, when 95% of the data
comes from group A, the logistic regression model trained with an ERM objective achieves 96% accuracy on group A
members, but only 59.2% accuracy on group B members.

Models trained with a DRO objective behave much differently. For the 80/20 split and 95/5 split, the DRO models learn
relatively fair decision boundaries, effectively balancing performance on both subgroups A and B. For the 60/40 split,
however, DRO actually learns a model that performs significantly better on the minority group than the majority group. This
model is in a sense discriminatory against the majority group. This is the result of the radius of the χ2-divergence ball being
too large and the model thus overly focusing on a worst case distribution.

As mentioned above, the correct choice of ρ is not necessarily obvious, but it greatly impacts the performance of the model.
Duchi et al. provide some recommendations and heuristics for choosing values of ρ in (Duchi & Namkoong, 2021). Along
with altering the value of ρ, one can change the f -divergence ball by varying the the value of k for f -divergences in the
Cressie-Read family. This has a similar effect to changing the value of ρ.

In Figures 9, 10, 11, and 12 we plot data from groups A and B for data generated with cA = 0.95, cB = 0.05 with the
learned decision boundary from a DRO and ERM model, respectively, overlaid. The background shading indicates the
predicted label with blue representing ŷ = 0 and red representing ŷ = 1, while the colour of the data points indicate their
true label.

Neither the regression nor the classification experiments in this section are designed to be realistic representations of
real-world applications, but rather are intended to provide a simple setting in which to investigate important differences
in the behaviour of models trained with ERM versus DRO objectives. In the next section we investigate a slightly more
complex classification task in the performative prediction setting and examine how DRO and ERM may impact fairness
considerations when deploying a model influences the distribution on which it is making predictions.

A.6.3. FAIRNESS AND RDRO

The data generating process is as follows:

XA ∼ N (µµµA,ΣΣΣA)

XB ∼ N (µµµB ,ΣΣΣB)

X = cAXA + cBXB cA, cB ∈ (0, 1), and cA + cB = 1

where

µµµA =

µ1
A
...

µ10
A

 , µµµB =

µ
1
B
...

µ10
B

 , ΣΣΣA =

σ
1
A · · · 0
...

. . .
...

0 · · · σ10
A

 , ΣΣΣB =

σ
1
B · · · 0
...

. . .
...

0 · · · σ10
B

 .
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Figure 9. Group A, DRO. Figure 10. Group B, DRO.

Figure 11. Group A, ERM. Figure 12. Group B, ERM.

Figure 13. Decision boundaries for ERM and DRO classifiers with samples from groups A and B with cA = 0.95 and cB = 0.05.
Shading indicates predicted label and data point colour indicates true label.

And for a data point, x = [x1
i , . . . , x

10
i ]T , with i ∈ {A,B},

y =

{
0 if x1

i + · · ·+ x10
i ≤ µ1

i + · · ·+ µ10
i

1 if x1
i + · · ·+ x10

i > µ1
i + · · ·+ µ10

i

.

For our experiment we set the parameters of the data generating process as

µi
A = 1 σi

A = 0.1 cA = 0.8

µi
B = 0.8, σi

B = 0.1, cB = 0.2.

These parameters were selected as an attempt to capture the notion that an underprivileged minority group may have features
that make them appear to be less qualified, despite having the same proportion of qualified individuals as a dominant majority
group. The data generating process obviously represents this at a high level of abstraction and is much less complex than
most real-world applications. With that said, we believe the data generating process effectively encapsulates this abstracted
characteristic that is central to concerns for learning fair models. Examples of the type of situation that this experiment
is intended to represent are college admissions or hiring, where an underprivileged minority group may not, on average,
have CVs that appear as impressive as their peers from the majority group due to a lack of opportunity, but are nevertheless
equally qualified for the school or job.
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Figure 14. Plot of the normalized distance between successive values of θ for ERM.

Figure 15. Plot of the normalized distance between successive values of θ for DRO.

We once again examine a strategic classification scenario, as in experiment 1, but our data now contains subgroups, allowing
us to analyze the impact of ERM and DRO on fairness and model performance in the performative setting. We examine four
different distribution maps by varying the parameter ϵ ∈ {0.01, 0.25, 0.5, 10} and set 5 of the 10 features to be strategic (i.e.
manipulable).

For both ERM and DRO we train L2-regularized logistic regression models with λ = 0.0001. We use stochastic gradient
descent with a fixed step-size of α = 0.2 and train for 8000 epochs on samples of 1,200 data points. We use a fixed
radius ρ of the χ2-divergence ball for DRO. All parameters were chosen empirically to give good performance on the base
distribution.

First, we examine the convergence behaviour of both algorithms by plotting the normalized distance between successive
iterates of the learned parameters, θt, in Figures 14 and 15. We observe that ERM does not converge for any value of ϵ,
while DRO converges for only ϵ = 0.01. It is unclear why the algorithms do not converge for other values of ϵ. The failure
to converge could be related to using a fixed, rather than decaying step-size, or because the conditions for the contraction
mapping are not met (recall that the conditions are sufficient, but not necessary for convergence of a particular instance). For
the three smaller values of ϵ, both ERM and DRO converge to a small neighbourhood, whereas for ϵ = 10, neither ERM nor
DRO exhibit any convergence.

To demonstrate the effect of the convergence, or lack thereof, of θ on the model’s performance, we plot the average
supervised and performative L2-regularized binary cross-entropy loss for ERM and DRO for ϵ = 0.5 and ϵ = 10 in Figure
16. The blue lines indicate the optimization phase and the green lines indicate the effect of the distribution shift after the
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classifier deployment. That is, the dots at the end of a green dotted line represent performative loss, while the dots at the
end of a blue line represent supervised loss. In the plots we can see that even though ERM and DRO do not converge for
ϵ = 0.5, the models quickly achieve relatively stable loss on the classification task. Note that the average L2-regularized
binary cross-entropy loss is the objective for which ERM is optimizing, but not the objective for which DRO is optimizing.

Given that this experiment is a balanced binary classification task, the metric in which we are principally interested is
accuracy. Furthermore, as we are interested in comparing the fairness properties of DRO and ERM, it is important to analyze
the performance of the models on the subgroups within the population, as well as the population as a whole. In Figures 17
and 18 we plot the the accuracy of the two models for ϵ = 0.5. We see that the performative accuracy of ERM initially
degrades significantly, before quickly converging to approximately 84% on the full population.

Conversely, the performative accuracy for DRO is actually initially higher than the accuracy on the distribution on which the
model was trained, but it also converges relatively quickly to an accuracy of approximately 72.5% on the full population.
This is once again due to DRO having a different optimization objective than ERM. The average cross-entropy loss acts as a
surrogate loss for the 0-1 loss and hence aims to maximize accuracy on the full dataset. The objective used for DRO focuses
on the tails of the distribution and therefore does not maximize accuracy across the full dataset. The improvement of the
DRO model’s accuracy after the distribution shift is not an inherent property of DRO, but rather is specific to this particular
dataset and distribution map. We see in Figure 17 at iteration t = 2 that ERM also occasionally achieves better performance
after distribution shift. In general, the improvement or degradation of accuracy depends on the learned parameters of the
model, the distribution map, the data, and the loss function.

In Figure 20 we plot the accuracy of ERM and DRO for the subgroups A and B for ϵ = 0.5. We can see from these plots
that the fairness properties of ERM and DRO are preserved in the performative prediction setting.

ERM converges to an accuracy of approximately 90% on group A and only approximately 54% on group B. DRO, on the
other hand, converges to much more equal accuracy across the two subgroups, achieving an accuracy of approximately
74% for group A and approximately 66% for group B. We summarize the accuracies to which ERM and DRO converge in
Tables 7 and 8. We do not include the accuracy for ϵ = 10 because neither ERM nor DRO converged to a small enough
neighbourhood, and therefore did not converge in accuracy. We see that the algorithms converge to similar accuracy values
for all the values of ϵ.

This result, while perhaps not that surprising, is important, as it demonstrates that not only does DRO exhibit similar
convergence behaviour to ERM, but DRO converges to fair fixed points, whereas ERM converges to discriminatory fixed
points in the presence of heterogeneous data composed of minority and majority subgroups. Recall also that DRO is not
given access to group information, but still learns to achieve more uniform performance across subgroups, as it is attempting
to minimize the worst case loss across all probability distributions within the χ2-divergence ball surrounding the data
generating distribution.

ERM Performative Accuracy
Group ϵ = 0.01 ϵ = 0.25 ϵ = 0.5

A 0.893 0.896 0.898
B 0.540 0.540 0.540

All Data 0.834 0.837 0.838

Table 7. Accuracy by Group for ERM after 30 iterations.

DRO Performative Accuracy
Group ϵ = 0.01 ϵ = 0.25 ϵ = 0.5

A 0.687 0.710 0.738
B 0.670 0.660 0.660

All Data 0.684 0.701 0.725

Table 8. Accuracy by Group for DRO after 30 iterations.
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Figure 16. Plots of the average L2-regularized binary cross-entropy supervised and performative loss.
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Figure 17. ERM

Figure 18. DRO

Figure 19. ERM and DRO accuracy on the full population across successive iterations.
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Figure 20. ERM and DRO accuracy on subgroups A and B across successive iterations.


