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Abstract
In supervised learning, it is known that label
noise in the data can be interpolated without
penalties on test accuracy. We show that inter-
polating label noise induces adversarial vulner-
ability, and prove the first theorem showing the
dependence of label noise and adversarial risk in
terms of the data distribution. Our results are
almost sharp without accounting for the induc-
tive bias of the learning algorithm. We also show
that inductive bias makes the effect of label noise
much stronger.

1. Introduction
Label noise is ubiquitous in data collected from the real
world. Such noise can be a result of both malicious intent
as well as human error. A relatively benign form of such
noise is one that is distributed uniformly randomly on the
data distribution. The well-known work of Zhang et al. [29]
observes that training overparameterised neural networks
with gradient descent can memorize large amounts of la-
bel noise without increased test error. Recently, Bartlett
et al. [2] investigated this phenomenon and termed it be-
nign overfitting: perfect interpolation of the noisy training
dataset still leads to satisfactory generalization for overpa-
rameterized models. A long series of works [7, 11, 17] have
focused on providing generalisation guarantees for models
that interpolate data under uniform label noise. This gives
some hope that noisy training data does not hurt the test er-
ror of overparameterized models, and therefore such mod-
els can be deployed in the real world.

Adversarial vulnerability is a practical security threat [14,
24, 8] for deploying machine learning algorithms in crit-
ical environments. An adversarially vulnerable classifier,
that is accurate on the test distribution, can be forced to
err on carefully perturbed inputs even when the perturba-
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tions are small. This has motivated a large body of work
towards improving the adversarial robustness of neural
networks [10, 19, 26, 20, 6]. Despite the empirical ad-
vances, the theoretical guarantees on robust defenses are
still poorly understood.

Consider the setting of uniformly random label noise. Un-
der certain distributional assumptions, Sanyal et al. [21]
claim that with moderate amount of label noise, when train-
ing classifiers to zero training error, the adversarial risk is
always large, even when the test error is low. However,
it is not clear whether their distributional assumptions are
realistic and if their result is tight. To responsibly deploy
machine learning models in the real world, it is important
to understand the extent to which a common phenomenon
like label noise can adversely impact adversarial robust-
ness. In this work, we improve upon previous theoretical
results [21], proving that label noise guarantees adversar-
ial risk for large enough sample size. We provide a lower
bound on the required sample size and show that, without
further assumptions on the data distribution or the machine
learning model, our result cannot be improved.

On the contrary, previous experimental results from Sanyal
et al. [21] show that neural networks suffer from large
adversarial risk even in the small sample size regime.
Our results suggests that explaining such a phenomenon
necessarily requires further assumptions on the data dis-
tributions, learning algorithm, or the machine learning
model. While specific biases of machine learning mod-
els and algorithms (referred to as inductive bias) have usu-
ally played a “positive” role in machine learning litera-
ture [28, 27, 16, 1], we show how some biases may make
the model more vulnerable to adversarial risks under noisy
interpolation.

2. Main theoretical results
Our setting Choose a norm ‖·‖ on Rd, for example ‖·‖2
or ‖·‖∞. For x ∈ Rd, let Br(x) denote the ‖·‖-ball of
radius r around x. Let µ be a distribution on Rd and let
f∗ : C → {0, 1} be a measurable ground truth classifier.
Then we can define the adversarial risk of any classifier f
with respect to f∗, µ, given an adversary with perturbation
budget ρ > 0 under the norm ‖·‖, as
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RAdv,ρ(f, µ) = Px∼µ [∃z ∈ Bρ(x), f∗(x) 6= f(z))] .
(1)

Next, consider a training set ((z1, y1), . . . , (zm, ym)) in
Rd × {0, 1}, where the zi are independently sampled from
µ, and each yi equals f∗(zi) with probability 1− η, where
η > 0 is the label noise rate. Let f be any classifier which
correctly interpolates the training set. We can now state the
main theoretical result of Sanyal et al. [21]:

Theorem 1 ( Sanyal et al. [21]). Suppose that there exist
c1 ≥ c2 > 0, ρ > 0, and a finite set ζ ⊂ Rd satisfying

µ

⋃
s∈ζ

Bρ/2(s)

 ≥ c1 and ∀s ∈ ζ, µ
(
Bρ/2(s)

)
≥ c2
|ζ|

(2)
Further, suppose that each of these balls contains points
from a single class. Then for δ > 0, when the number of
samples m ≥ |ζ|

ηc2
log
(
|ζ|
δ

)
, with probability 1− δ

RAdv,ρ(f, µ) ≥ c1. (3)

This is the first guarantee for adversarial risk caused by la-
bel noise in the literature. However, Theorem 1 has two
extremely strong assumptions:

• The input distribution has mass c1 in a union of balls,
each of which has probability mass at least c2;

• Each ball only contains points from a single class.

The assumptions are unrealistic: it is not clear why such
balls would exist for real-world datasets, or even MNIST
or CIFAR-10. In Theorem 2, we remove these assumptions
and show that our guarantees hold for all compactly sup-
ported input distributions, with comparable guarantees on
adversarial risk.

Denote a compact subset of Rd by C. An important quan-
tity in our theorem will be the covering number N =
N(ρ/2; C, ‖·‖) of C in the metric ‖·‖. The covering number
N is the minimum number of ‖·‖-balls of radius ρ/2 such
that their union contains C.

Theorem 2. Let C ⊂ Rd satisfy µ(C) > 0, and let N =
N(ρ/2; C, ‖·‖) be its covering number. For δ > 0, when
the number of samples satisfies m ≥ 8N

µ(C)η log 2N
δ . with

probability 1− δ we have that

RAdv,ρ(f, µ) ≥ 1

4
µ(C). (4)

Note that the compact C can be chosen freely to make trade-
offs between the required number of samples m and the

lower bound on the adversarial risk. As the covering num-
ber of the chosen C increases, the lower bound on the ad-
versarial risk increases, but we also increase the required
number of samples for the theorem to kick in. The trade-
off curve depends on the distribution µ; we discuss this in
Section 3.

For compactly supported µ, we can take C to be the support
of µ to prove a general statement.

Corollary 3. Let N be the covering number of supp(µ)
with balls of radius ρ/2. For δ > 0, when the number of
samples satisfies m ≥ 8N

η log 2N
δ . with probability 1 − δ

we have that

RAdv,ρ(f, µ) ≥ 1

4
. (5)

This is easier to interpret than Theorem 2: if interpolating a
dataset with label noise, the number of samples required to
guarantee constant adversarial risk scales with the covering
number of the support of the distribution.

Our Theorem 2 avoids the unwieldy assumptions, and in
fact gives a slightly stronger guarantee than Theorem 1.
When Equation (2) holds, our theorem requires the num-
ber of samples m = Ω̃

(
|ζ|
ηc1

)
instead of m = Ω̃

(
|ζ|
ηc2

)
in Theorem 1. We leave the proof of Theorem 2 to Ap-
pendix A, but we provide a brief sketch of the ideas behind
it.

Proof sketch We want to prove that a large portion of points
from µ have a label noised point nearby when m is large
enough. With the label noise probability η > 0, the ex-
pected number of label noise training points is ηm; how-
ever a priori those could be anywhere in the support of µ.

The key idea is that we can always find a set of ‖·‖-balls
covering a lot of measure, with each of the balls having a
large enough density of µ. We prove this in Lemma 6.Then,
if we take a lot of ‖·‖-balls with large density of a single
class, we can prove that label noise induces an opposite-
labeled point in each of the chosen balls given m large
enough.

Concretely, the probability for a single chosen ball to not be
adversarially vulnerable is on the order of

(
1− η

2N

)µ(C)m
,

and summing this up over the chosen balls goes to zero in
the assumed regime. Each of these balls is then adversari-
ally vulnerable, summing up to a constant adversarial risk.

3. Practical implications
In his section, we discuss the limitations of results such
as Theorem 2 in practical settings. When we allow arbi-
trary classifiers, we show that Theorem 2 paints an accu-
rate picture of the interaction of label noise, interpolation
and adversarial risk. However, we also show that this par-
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ticular theoretical framework does not offer much hope in
explaining the strong effect of label noise previously shown
in Figure 3, as discussed in Section 4. We argue that this
requires a better understanding of the inductive biases of
the hypothesis class and the optimisation algorithm.

Large sample size is sometimes needed The number of
required samples m in Theorem 2 can be very large, de-
pending on the density and the covering number of the cho-
sen compact C. Consider ‖·‖ to be the maximum-norm
‖·‖∞, as is customary in adversarial robustness research
[10]. Then the balls Bρ are small hypercubes in Rd. If we
choose C to be the hypercube [0, 1]d, the covering number
scales exponentially:

N = N(ρ; [0, 1]d, ‖·‖∞) '
(

1

ρ

)d
. (6)

This can scale badly even for standard datasets such as
MNIST (d = 784) or CIFAR-10 (d = 3072), since in The-
orem 2 we need m & N

µ(C)η . This amounts an impossibly
large sample size (m & 10784) to explain the effect present
in m = 50000 MNIST training samples in Figure 3.

Hence our result often does not guarantee any adversarial
risk if the number of samples m is small. In general, the
covering number of a dataset is not polynomial in the di-
mension, except if the data has special properties in the
given metric. For example, if the data distribution is sup-
ported on a subspace of Rd of dimension k < d, we can
pick a C for which the covering number in ‖·‖2 will depend
only on k and not on d.

The large required sample size is not just a limitation of
Theorem 2; in fact, we can show that if arbitrary classifiers
are allowed, it is not always possible to lower bound the
adversarial risk for m = poly(d).

Our result is tight It is a priori possible that the true
dependence of adversarial risk on label noise kicks in for
much lower sample size regimes than in Theorem 2. This
might suggest that the lower bound on sample complexity
can be improved. We can show this is not the case and in
fact our bound is sharp. In particular, we exhibit a simple
distribution on Rd such that there exist classifiers which
correctly and robustly interpolate datasets of m = poly(d)
samples from the distribution1.

Proposition 4. Let µ be the uniform distribution on
Sd−1 =

{
x1, . . . , xd ∈ Rd : x21 + . . .+ x2d = 1

}
, and let

the ground truth classifier f∗ be a threshold function on x1:
f∗(x) = 1x1>

1
2

. Consider any adversarial radius ρ < 1
4 in

the Euclidean metric. Then, for any label noise η < 1: with
high probability, there exists a classifier f that interpolates

1We believe we can improve this to be exponential in m here.

m = b1.01dc samples from the label noise distribution,
such thatRAdv,ρ(f, µ) = od(1).

Proof sketch The main ingredient of the proof is the con-
centration of measure on Sd−1, which makes the training
samples far apart in the Euclidean or ‖·‖∞ metrics.We
leave the full proof to Appendix B. Similar statements in
the clean data setting have appeared before, most recently
in [4].

Note that Proposition 4 shows that Theorem 2 cannot give
an adversarial risk lower bound with sample size polyno-
mial in m. Hence the covering number of any substantial
portion of Sd−1 is super-polynomial in the dimension d.
This unintentionally proves that the covering number of the
sphere Sd−1 in the Euclidean metric is exponential, which
is well-known.2

Optimizing C can avoid large sample size While Propo-
sition 4 shows that our result in Theorem 2 is sharp in the
worst case, it is possible a smaller sample size requirement
under certain conditions. In particular, if we can pick a
compact C with small covering number, such that the mea-
sure µ(C) is not too small, then Theorem 2 allows for a
small sample size while guaranteeing a large adversarial
risk.

Example Take an adversarial radius ρ > 0 in the ‖·‖∞
metric, Let µ = 1

2µ1+ 1
2µ2 be the average of two measures,

µ1 and µ2, with µ1 the uniform distribution on [0, 1]d, and
µ2 the uniform distribution on a smaller hypercube [0, ρ]d.

The first choice C = [0, 1]d as in Corollary 3 has covering
number on the order of ρ−d. Theorem 2 is then vacuous
until m & ρ−d/η, which is very large in high dimensions.
However, if we instead use C = [0, ρ]d, the covering num-
ber is 1 and we can use Theorem 2 for m = O( 1

η ).

Formally, to get the “best possible” m in Theorem 2 for a
certain adversarial risk lower bound r, we should solve the
following optimization problem over subsets of supp(µ):

min
µ(C)≥4r

N(ρ/2, C, ‖·‖∞) logN(ρ/2, C, ‖·‖∞)

µ(C)
. (7)

It is not known whether this problem is tractable in gen-
eral. However, the concept of having to solve an optimi-
sation problem in order to get a tight lower bound is com-
mon in the literature. Some examples are the representa-
tion dimension [3] in differential privacy and the SQ di-
mension [9] in learning theory.

2See Proposition 4.16 in https://www.stats.ox.
ac.uk/˜rebeschi/teaching/AFoL/20/material/
lecture04.pdf

https://www.stats.ox.ac.uk/~rebeschi/teaching/AFoL/20/material/lecture04.pdf
https://www.stats.ox.ac.uk/~rebeschi/teaching/AFoL/20/material/lecture04.pdf
https://www.stats.ox.ac.uk/~rebeschi/teaching/AFoL/20/material/lecture04.pdf
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4. The role of inductive bias
We have seen, in the previous section, that without further
assumptions the theoretical guarantees in Theorem 2 only
hold for very large training sets. Proposition 4 shows that
the result of Theorem 2 is sharp in that these results cannot
be improved. In this section, we discuss how the inductive
bias of the hypothesis class or the learning algorithm can
lower the sample size requirement. This is practically rele-
vant as Figure 3 shows that state of the art neural networks,
in common vision datasets, show a much stronger depen-
dance between label noise and adversarial robustness than
what Theorem 2 prescribes.

Inductive bias can hurt robustness even further There is
already ample empirical evidence [18, 13, 23] in existing
works that neural networks exhibit an inductive bias that is
different from what is required for robustness. For exam-
ple, this is evident from the experiments shown in Figure 8
and Figure 9(a) in Sanyal et al. [21]. Shah et al. [22] also
provides empirical evidence that neural networks exhibit
a certain inductive bias, that they call simplicity bias, that
hurts adversarial robustness.

Here, we show a simple example to illustrate the role of
inductive bias. Consider a binary classification problem on
a data distribution µ and an m-sized dataset Sm,η sampled
i.i.d. from µ such that the label of each example is flipped
with probability η. We use H,F to denote two hypothesis
classes.
Theorem 5. For any ρ > 0, there exists a distribution
µ and two hypothesis classes H and F , such that for any
label noise rate η ∈ (0, 1/2) and dataset size m = Θ

(
1
η

)
,

we have that: for all h ∈ H that interpolate Sm,η ,

RAdv,ρ (h;µ) ≥ Ω (1) ; (8)

whereas there exists an f ∈ F that interpolates Sm,η and

RAdv,ρ (f ;µ) = O (ρ) . (9)

We state the detailed proof in Appendix C but provide a
short proof sketch here. The data distribution µ, of our
construction, is defined on the domain R2 and distributed
uniformly on the set [0,W ]× {0} i.e., the data is just sup-
ported on the first coordinate where W � ρ. The ground
truth classifier is a threshold function on the first coordi-
nate. The hypothesis f ∈ F simply labels everything ac-
cording to the ground truth classifier except the mislabelled
data points; where it constructs infinitesimally small inter-
vals around the point on the first coordinate. Note that this
construction is similar to the one in Proposition 4. By con-
struction, it interpolates the training set and its expected
adversarial risk is upper bounded by 2mηρ.

Each hypothesis in H can be thought of as a union of T-
shaped decision regions as illustrated in Figure 1. The re-

W

≤ ρ

Figure 1: Visualization of a portion of the distribution µ
and the hypothesis classH used in Theorem 5. The crosses
are the mislabelled examples and the circles are correctly
labelled examples. All the circles are adversarially vulner-
able if perturbed upwards with magnitude less than ρ.

gion inside the T-shaped regions are classified as 1 and the
rest 0. Note that the head of the Ts make the region on the
data manifold (first coordinate) directly below it adversari-
ally vulnerable. Thus, for a significantly large width of the
head, the total measure of the adversarially vulnerable set
is large for any interpolating classifier. The width of the T
can be interpreted as the inductive bias of the learning al-
gorithm. The decision boundaries of neural networks usu-
ally lie on the manifold of the data [25]; and the network
behaves more smoothly off the data manifold. A natural
consequence of this is that the head of the Ts will be large.
We don’t propose this to be the exact inductive bias but
rather an illustrative example for what might be happening
in practice.

There are two important properties of this relatively
simple example that make them relevant for understanding
adversarial vulnerability of neural networks. First, the
adversarial examples constructed here are off-manifold
i.e., they do not lie on the manifold of the data. This
has been observed in prior works [12, 20]. Secondly,
implicitly our examples also exhibits the dimpled manifold
phenomenon described in Shamir et al. [23].

Is Theorem 2 about the wrong function class? When
fitting deep neural networks to real datasets, the results of
Theorem 2 still hold even when the number of samples m
is smaller than required. We think that proving guarantees
on adversarial risk in the presence of label noise is within
reach for simple neural networks. Towards this goal, we
propose a conjecture in a similar vein to Bubeck et al. [5]:

Conjecture 1. Let f : Rd → R be a neural network with a
single layer with k neurons. Under the same conditions as
in Theorem 2, for m = Ω̃( 1

ηpoly(k, d)),

RAdv,ρ(f, µ) ≥ const. (10)

for a distribution µ supported on [0, 1]d.

In short, we conjecture that neural networks exhibit prop-
erties (inductive biases) which hurt robustness when inter-
polating label noise. Understanding these properties is im-
portant for deploying neural networks in real world envi-
ronments, where uniform label noise is not a possibility but
rather a norm.
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David Martı́nez-Rubio, Vladimir Mikulik, and Ard A.
Louis. Neural networks are a priori biased towards
boolean functions with low entropy. In International
Conference on Learning Representations (ICLR),
2020.

[17] Vidya Muthukumar, Adhyyan Narang, Vignesh Sub-
ramanian, Mikhail Belkin, Daniel Hsu, and Anant
Sahai. Classification vs regression in overparam-
eterized regimes: Does the loss function matter?
arXiv:2005.08054, 2020.

[18] Guillermo Ortiz-Jimenez, Apostolos Modas, Seyed-
Mohsen Moosavi, and Pascal Frossard. Neural
anisotropy directions. Advances in Neural Informa-
tion Processing Systems, 33:17896–17906, 2020.

[19] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a defense
to adversarial perturbations against deep neural net-
works. In IEEE symposium on security and privacy
(SP), 2016.

[20] Amartya Sanyal, Varun Kanade, Philip HS Torr, and
Puneet K Dokania. Robustness via deep low-rank rep-
resentations. arXiv:1804.07090, 2018.

[21] Amartya Sanyal, Puneet K. Dokania, Varun Kanade,
and Philip Torr. How benign is benign overfitting?
In International Conference on Learning Representa-
tions (ICLR), 2021.



A law of adversarial risk, interpolation, and label noise

[22] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan,
Prateek Jain, and Praneeth Netrapalli. The pitfalls of
simplicity bias in neural networks. Advances in Neu-
ral Information Processing Systems (NeurIPS), 2020.

[23] Adi Shamir, Odelia Melamed, and Oriel BenShmuel.
The dimpled manifold model of adversarial examples
in machine learning. arXiv:2106.10151, 2021.

[24] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and
Michael K Reiter. Accessorize to a crime: Real and
stealthy attacks on state-of-the-art face recognition. In
Proceedings of the 2016 ACM SIGSAC Conference on
computer and communications security, 2016.

[25] Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping
Yeh-Chiang, Yehuda Dar, Richard Baraniuk, Micah
Goldblum, and Tom Goldstein. Can neural nets learn
the same model twice? investigating reproducibility
and double descent from the decision boundary per-
spective. arXiv:2203.08124, 2022.
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A. Proof of Theorem 2
Here we prove the following statement:

Theorem 2. Let C ⊂ Rd satisfy µ(C) > 0, and let N = N(ρ/2; C, ‖·‖) be its covering number. For δ > 0, when the
number of samples satisfies m ≥ 8N

µ(C)η log 2N
δ . with probability 1− δ we have that

RAdv,ρ(f, µ) ≥ 1

4
µ(C). (4)

For notational convenience, we replace ρ by 2ρ in all places for the proof below.

Proof. Without loss of generality, let C0 = {x ∈ C : f∗(x) = 0 } have probability µ(C0) ≥ 1
2µ(C). Let µ0 = µ|C0 ,

normalized so that µ0(C0) = 1.

By Chernoff, with probability 1 − exp
(
−µ(C)m16

)
≥ 1 − δ

2 , at least m0 = bµ(C)m4 c of the samples zi are in C0. Without
loss of generality, let z1, . . . ,zm0

be those samples. Then

RAdv,2ρ (f, µ) ≥ 1

2
µ(C) Px∼µ,x∈C0 [∃z ∈ B2ρ(x), f∗(x) 6= f(z))] (11)

=
1

2
µ(C) Px∼µ0

[∃z ∈ B2ρ(x), f(z) 6= 0] (12)

≥ 1

2
µ(C) Px∼µ0

[∃ i ≤ m0 : zi ∈ B2ρ(x) ∩ C0, f(zi) 6= 0] (13)

=
1

2
µ(C) Px∼µ0

[∃ i ≤ m0 : x ∈ B2ρ(zi), zi ∈ C0, f(zi) 6= 0] . (14)

=
1

2
µ(C) µ0

 ⋃
i≤m0, f(zi)6=0

B2ρ(zi)

 . (15)

Let s1, . . . , sN be a ρ-covering of C0, ordered such that

µ0(Bρ(s1)) ≥ . . . ≥ µ0(Bρ(sN )) (16)

The plan is the following: we will lower bound
⋃
i≤m0, f(zi)6=0B2ρ(zi) by the union of some Bρ(sk), which will have

large µ0-measure in total. Moreover, each of the chosen Bρ(sk) will have large enough µ0-measure. For this, we use the
following lemma:

Lemma 6. If 1 ≤ K ≤ N is the largest index such that µ0(Bρ(sK) ≥ 1
2N , then

µ0

(
K⋃
k=1

Bρ(si)

)
>

1

2
. (17)

Proof. As
⋃N
k=1Bρ(si) is a cover of C0,

µ0

(
N⋃

k=K+1

Bρ(si)

)
≥ 1− µ0

(
N⋃

k=K+1

Bρ(si)

)
≥ 1−

N∑
k=K+1

µ0(Bρ(si)) ≥ 1− N −K
2N

>
1

2
. (18)

�

We now show that the chosen balls are dense enough to get samples in the training set with high probability.

Lemma 7. With probability 1− δ/2, each Bρ(sk) for k ≤ K contains at least one zi ∈ C0 such that f(zi) 6= 0.
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a) The original cover of C. b) The dense greedy subcover.

Figure 2: Illustration of Lemma 6. Given a cover of N balls, we can pick a subcover of balls covering at least half of the
measure, with each ball having measure at least 1

2N .

Proof. We have

P [zi ∈ Bρ(sk) | zi ∈ C0] ≥ 1

2N
, (19)

and because the label corruption is independent from everything, we also have

P [f(zi) 6= 0 | zi ∈ C0] = η (20)

=⇒ P [f(zi) 6= 0 ∧ zi ∈ Bρ(sk) | zi ∈ C0] ≥ η

2N
(21)

Therefore,

P [Bρ(sk) ∩ { zi : i ≤ m0, f(zi) 6= 0 } = ∅] (22)

=

m0∏
i=1

P [zi /∈ Bρ(sk) ∨ zi /∈ C0 ∨ f(zi) 6= 0] (23)

≤
(

1− η

2N

)m0

(24)

≤ exp
(
−m0η

2N

)
=

δ

2N
, (25)

and hence

P

[(
K⋃
k=1

Bρ(sk)

)
∩ { zi : i ≤ m0, f(zi) 6= 0 } = ∅

]
≤ K δ

2N
≤ δ

2
. (26)

�

Finally, using both Lemma 6 and Lemma 7, we can finish:

RAdv,2ρ =
1

2
µ(C) µ0

 ⋃
i≤m0, f(zi)6=0

B2ρ(zi)

 . (27)

≥ 1

2
µ(C) µ0

(
K⋃
k=1

Bρ(sk)

)
≥ 1

4
µ(C). (28)
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B. Proof of Proposition 4
Proposition 4. Let µ be the uniform distribution on Sd−1 =

{
x1, . . . , xd ∈ Rd : x21 + . . .+ x2d = 1

}
, and let the ground

truth classifier f∗ be a threshold function on x1: f∗(x) = 1x1>
1
2

. Consider any adversarial radius ρ < 1
4 in the Euclidean

metric. Then, for any label noise η < 1: with high probability, there exists a classifier f that interpolates m = b1.01dc
samples from the label noise distribution, such thatRAdv,ρ(f, µ) = od(1).

Proof. Let the m = 1.01d ≤ exp(d/80) samples be z1, . . . ,zm with labels y1, . . . , ym ∈ {0, 1}. Almost surely the zi are
distinct. Define the interpolating classifier f : Rd → {0, 1} as

f(x) =

{
yi if x ∈ {z1, . . . ,zm};
1x1>

1
2

otherwise.
(29)

We want to show f is robust. Draw x = (x1, . . . , xd) uniformly on Sd−1. There are only two ways x can contribute to the
adversarial riskRAdv,ρ(f, µ):

• x is close to a training sample zi with label noise;

• x is close to the “decision boundary” x1 = 1
2 of Sd−1.

Hence, remembering Equation (1),

RAdv,ρ(f, µ) ≤ P [x is in a ρ-ball around at least one of the zi] + P
[

1

2
− ρ ≤ x1 ≤

1

2
+ ρ

]
. (30)

≤ P [x is in a ρ-ball around at least one of the zi] + P
[
x1 ≥

1

2
− ρ
]
. (31)

By the union bound,

P [x is in a ρ-ball around at least one of the zi] (32)
≤ m P [‖x− z1‖2 ≤ ρ] (33)

≤ m P
[
‖x‖2 + ‖z1‖2 − 2〈x, z1〉 ≤ ρ2

]
(34)

= m P
[
〈x, z1〉 ≥ 1− ρ2/2

]
. (35)

As µ is rotationally invariant, 〈x, z1〉 is distributed the same as x1. We have proved

RAdv,ρ(f, µ) ≤ m P
[
x1 ≥ 1− ρ2

2

]
+ P

[
x1 ≥

1

2
− ρ
]
. (36)

We can bound P[x1 ≥ t] for t > 0 as follows: let g1, . . . , gd be i.i.d. standard N(0, 1) random variables.

P [x1 ≥ t] = P

[
g1√

g21 + . . .+ g2d
≥ t

]
(37a)

= P
[
g21 ≥ t2(g21 + . . .+ g2d)

]
(37b)

= P
[

1− t2

t2
g21 ≥ g22 + . . .+ g2d

]
(37c)

≤ P
[

1− t2

t2
g21 ≥

d− 1

2

]
+ P

[
g22 + . . .+ g2d ≤

d− 1

2

]
, (37d)

where the last inequality is because a ≤ b implies a ≥ c or b ≤ c.
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As 0 < ρ < 1
4 , we can take t = 1

4 in both probabilities in Equation (36). We now use the often-cited chi-square bounds
from Lemma 1 in Laurent and Massart [15].

P
[
g22 + . . .+ g2d ≤ (d− 1)− 2

√
(d− 1)s

]
≤ exp (−s) (38a)

P
[
g21 ≥ 1 + 2

√
s+ 2s

]
≤ exp (−s) (38b)

Then for s = d
40 , it’s easy to see that both probabilities in Equation (37d) are less than the corresponding probabilities in

Equation (38b) and Equation (38a).

Finally, as d goes to infinity,

RAdv,ρ(f, µ) ≤ m exp(−d/40) + exp(−d/40) (39)
≤ exp(−d/80) + exp(−d/40)→ 0. (40)

C. Proof of inductive bias
Theorem 8. For any ρ > 0, there exists a distribution µ and two hypotheses classes H and F , such that for any label
noise rate η ∈ (0, 1/2) and dataset size m = Θ

(
1
η

)
, we have that: for all h ∈ H that interpolate Sm,η ,

RAdv,ρ (h;µ) ≥ Ω (1) ; (41)

whereas there exists an f ∈ F that interpolates Sm,η and

RAdv,ρ (f ;µ) = O (ρ) . (42)

Proof. For any ρ ≥ 0, W � ρ, construct a distribution µ on [0,W ]× {0} as follows. Distribute the covariates uniformly
randomly in [0, W2 −2ρ]

⋃
[W2 +2ρ, W ] and then label then with the ground truth labelling function f∗ (x) = 1{x1 ≥ W

2 }
where x = [x1, x2] is the two-dimensional covariate. Next, we construct an m dimensional dataset and flip each label
independently with probability 1− η. We denote this set with Sm,η .

The hypothesis class F is the class of one-dimensional thresholds on the first coordinate of the input space (ignores the
second coordinate entirely). Define the following interpolating classifier f ∈ F : R2 → {0, 1} as follows

f(x) =

{
y1 if x is in Sm,η
1{x1 ≥ W/2} otherwise

.

As the sampling of the covariates and the label noise are independent events,

ESm,η [# of mislabelled points in Sm,η] = mη.

Then the expected measure of the set of points adversarially vulnerable by an adversary of perturbation magnitude ρ on
the classifier h, as defined above, is upper bounded by 2ρmη. Using the fact that the total measure of the domain is W and
that m = Θ

(
1
η

)
, we get that

ESm,η [RAdv,ρ (f ;µ)] ≤ 2ρmη

W
= O(ρ).

Next, consider the hypothesis class H defined as follows. Given a set of points Z = {z1, . . . , zk} ∈ [0,W ]k and γ > ρ,
define the hypothesis

hZ,γ (x) =


1 ∃z ∈ Z | 1{x2 < ρ} ∧ 1{x1 = z}
1 ∃z ∈ Z | 1{x2 < ρ} ∧ 1{|x1 − z| ≤ γ}
0 otherwise.
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(a) MNIST (b) ResNet18 (CIFAR10) (c) DenseNet121 (CIFAR10)

Figure 3: From Sanyal et al. [21]. Adversarial error increases with increasing label noise η (x-axis) at a rate much faster
than predicted by Theorem 2. This is likely due to the inductive bias of the neural network. Here, ε is the perturbation
magnitude (ρ in the current paper). The label noise is synthetically injected in the training set with probability η.

If S̃ is the set of mislabelled 1s in Sm,η , then for any interpolating classifier hZ,γ , it holds that S̃ ⊆ Z . Next, by
construction, for every point z ∈ Z , it holds that all points x ∈ [z − γ, z + γ] can adversarially perturbed in the x2
component to obtain the label 1. Thus the total measure of the adversarially vulnerable set of points is greater than the
number of mislabelled points, whose original label is zero, multipled with 2γ, which is 2mηγ.

Thus, we have that for any h ∈ H that interpolates Sm,η ,

ESm,η [RAdv,ρ (f ;µ)] ≥ min

(
2γmη

W
, 1/2

)
= Ω(γ).

Finally, note that both of the bounds in Theorem 8 can be transformed into high probability bounds using concentration
inequalities. Also note that for simplicity, we do not treat the above as learning problems, but it is possible to show that
there exists a learning algorithms that uses a similar number of samples as above to output f ∈ F such that the adversarial
risk is O (ρ).

D. Existing experimental results
In Figure 3, we show results from Sanyal et al. [21]. Here, the adversarial risk is plotted against label noise in the dataset
for various neural network models and datasets.
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