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Abstract
Recently the fairness community has shifted from
achieving one-shot fair decisions to striving for
long-term fairness. In this work, we propose a
metric to measure the long-term impact of a pol-
icy on the target variable distributions. We theo-
retically characterize the conditions under which
threshold policies could lead to a backfire effect.
We conduct experiments with a set of well-used
fairness constraints on both synthetic and real-
world datasets.

1. Introduction
The past decades have seen tremendous developments in
machine learning algorithms. As machine learning algo-
rithms have been deployed to fields such as loan application
or recidivism prediction [5] [2], there are growing concerns
about potential biases of those algorithms. Current solu-
tions mitigating biases mostly focus on decision fairness,
which ensures that decisions made by the algorithm is not
disparate among population groups. This is based on the
assumption that decisions will not affect the outcome distri-
butions of the population. However, decisions made about
individuals often create a feedback loop and nudge different
segments of the population towards different distributions.
Even decisions with good intentions may create unintended
feedback loops. For example, a bank might take affirmative
action and approve loans at a lower threshold for people
coming from less-privileged socioeconomic groups. Yet if
those people then have trouble paying back the loan later,
the effect would further decrease their credit scores and
credentials in the future.

There is a growing need to understand the long-term impact
of deployed fairness concerned algorithms. In this paper, we
focus on a set of threshold policies and investigate whether
enforcing these policies have an equalized impact on dif-
ferent population groups if feedback loops of decisions are
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taken into consideration. In particular, we assume there is a
target variable that measures the success probability of a pos-
itive outcome, such as loan repay probability. We consider
a policy fair if it has a equal/comparable impact on shaping
the distribution of the target variable of the groups. Our
work characterizes when backfire effect occurs – where poli-
cies that appear neutral or fair result in a disproportionate
impact on a protected group.

In this work, we make the following contributions:

• We first formally propose a metric to measure the im-
pact of a threshold policy on the target variable distri-
butions in terms of within-group and between-group
segregation.

• We use Structural Causal Models (SCM) to theoreti-
cally characterize the conditions under which threshold
policies could further entrench disparity of the target
variable and lead to a backfire effect.We use both syn-
thetic and real world dataset to illustrate the insight.

2. Background
Many of the datasets available in the fairness applications
could have causal nature, where there are often causal depen-
dencies of the target variable on the group attribute. In this
section, we formulate the modeling assumptions in the lens
of causal Markov Decision Process (MDP), where the MDP
models the temporal transition of the underlying distribu-
tion and the Structural Causal Models (SCM) characterizes
the causal relationship between variables at each state as
a causal graph. This framework allows us to capture the
causal relationships between variables in a dynamic setting.

At each time step, the state is a causal graph G with three
endogenous nodes: (X,Y, Z), where X ∈ Rd is the set of
features, Z ∈ {0, 1} is the time-invariant sensitive attribute,
and Y ∈ [0, 1] is the target variable.

In the following we describe the transition in terms of the
structural equations.

• Initialization: The process is initialized with time-
invariant sensitive attribute Z, a set of observed fea-
turesXt, and the target variable Y t. The target variable
Y t is a function of the features Xt, i.e., Y t = fY (Xt).

• Action: At time step t, a binary action At ∈ {0, 1} is
applied, which potentially depends on Y t and sensitive
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Z, i.e, At = fA(Y t, Z).
• Outcome: After applying the action, an binary out-

come is observed. We use an auxiliary variable
Ot ∼ Bernoulli(Y t) to indicate the outcome variable,
which is sampled from Bernoulli distribution with Y t

as the parameter.
• Transition: Based on the realized outcome Ot, the

features Xt will be updated with based on action and
outcome, where Xt+1 = fX(Xt, At, Ot). The target
variable Y t will be updated accordingly.

• Utility: The decision maker’s utility is a function of the
realized outcome and the action, i.e., U t = fU (Ot, At).
Specifically, if a decision maker assigns a positive ac-
tion (At = 1), the utility is increased by u+ if the
outcome is positive, and decreased by u− if the out-
come is negative.

3. The backfire effect of fairness policies
We first categorize the impact of a policy into within-group
disparity and between-group disparity:

• Within-group Disparity: Within-group disparity hap-
pens when a policy could lead to further inequality and
dichotomy within a population group.

• Between-group Disparity: Between-group disparity
happens when a policy entrench the distribution dispar-
ity between two population groups.

We introduce a novel fairness metric to measure the im-
pact of a policy on the distribution of the target variables.
In particular, we consider a policy fair if it has equal or
comparable effects on the target variable both in terms of
within-group disparity and between-group disparity.
Definition 3.1 (Within-group disparity). Let Y t

z be the
group z’s target variable, and δtz = g(Y t

z ) − g(Y 0
z ) be the

change in the aggregated value with respect to t = 0 for
group z, where g(·) is an aggregation function.
Definition 3.2 (Between-group disparity). We define the
between-group disparity at time step t as

∆t = |δtz=0 − δtz=1|

We say that a policy has a backfire effect if ∆T ≥ ∆0,i.e.,
the policy increases the disparity from time t = 0. We use
figure 1 to illustrate the backfire effect in terms of within-
group disparity and between-group disparity.

The choice of the aggregation function In previous
work [1][4][6], the analysis has only been focused on the
group average, where g is the mean function. We extend
the analysis by allowing g to be a distance function that
measures the shift from distribution Y 0 to distribution Y t

(F-divergences for example) to characterize the distribution
shift in a more fine-grained way. One interesting choice with
real-world implication is Gini-coefficient, which measures
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Figure 1: An illustration of backfire effects of a policy. δz=0

and δz=1 measures the impact of the policy on the red group
and blue group respectively. The policy leads to within-
group disparity for the red group as well as between-group
disparity.

income inequality within a population group.

3.1. The impact of threshold policies

In this section, we restrict our attention to the family of
threshold policies, whereAt = 1(Y t ≥ τ t) for some thresh-
old τ t. We analyze theoretically when threshold policies
would lead to disparity between groups. Let

X+ = fX(Xt, At = 1, Ot = 1)−Xt

X− = Xt − fX(Xt, At = 1, Ot = 0)
be the change in feature value for positive outcome and
negative outcome respectively.

Theorem 3.3. The within-group disparity at time T after
applying thresholds τ1, .., τT is

δz(τ1:T ) =

T∑
t=0

g((1−FY t
z
(τ t))∇fY (Xt)[Y t

z (X++X−)−X−])

and the between-group disparity is
∆T = |δ0(τ1:T0 )− δ1(τ1:T1 )|

where FY t
z

is the CDF of Y t
z , and τ1:T0 and τ1:T1 are thresh-

olds applied on group 0 and 1 respectively.

The theorem shows that the disparity depends on the ini-
tial distribution, and the feature contribution direction
∇fY (Xt). With all other things fixed, when threshold τ in-
creases, 1−FY t

z
(τ t) decreases, and the disparity decreases.

4. Case Studies
Next we use two case studies to empirically illustrate
the impact of threshold policies. In both cases, the ini-
tial group distribution is time-invariant and sampled from
Z0 ∼ Bernoulli(p0) where p0 is the probability the an
individual comes from group z0.
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Loan Application Example The loan application exam-
ple was first proposed by [3] to study the one-step feedback
effect of fairness constraints. We first frame the loan ap-
plication example in the format of a dynamic SCM. The
variables in the SCM are as follows: Z ∈ {0, 1} is the bi-
nary sensitive attribute, X ∈ [cmin, cmax] is the credit score
, A ∈ {0, 1} is the binary loan approval/rejection decision,
and Y ∈ [0, 1] is the probability of repaying. The initial dis-
tribution of Z,X0, Y 0 is estimated from the dataset. Since
the data is not sequential in nature, we use a synthetic struc-
tural equation for the feature update function fX .

Xt+1 =

{
min{Xt +X+, cmax} if Ot = 1, At = 1

max{cmin, X
t −X−} if Ot = 0, At = 1

Synthetic Gaussian In the second example, we extend
previous simulation work [1] where the feature variable is
only 1-dim. The initial feature distribution X0 is sampled
from a group-specific 2-dim Gaussian distribution. The
target variable is the sigmoid of a linear transformation of
the feature vectors with weight vector M . The i-th feature
positively contribute to the target variable ([∇fY (X)]i > 0)
if i-th component in M is positive.

X0 ∼ Nd(µz,Σz)

Y t =
1

1 + e−Xt·M

Xt+1 =

{
Xt +X+ if Ot = 1, At = 1

Xt −X− if Ot = 0, At = 1
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Figure 2: Left: Initial feature distribution of the synthetic
Gaussian example. Right: Initial target variable distribution
of loan application example.

4.1. Candidate Threshold Policies

The goal of the decision maker is to determine a threshold
that maximizes its utility function subject to some fairness
constraints. Here we list a few commonly used fairness
constraints used in simulation.

Max Utility Max utility (MaxUtil) policy maximizes
the expected utility without constraints.

Demographic Parity Demographic parity (DemoPar)
policy maximizes the expected utility subject to the de-
mographic parity constraints, which requires that a policy
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(a) MaxUtil.
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Figure 3: Synthetic Gaussian Example. Top: M1 = [1, 1].
Bottow: M2 = [1,−1].

issues loans to the same percentage of applicants in both
groups (E[At = 1|Z = 0] = E[At = 1|Z = 1]).

Equalized Opportunity Equalized opportunity (EqOpp)
policy maximizes the expected utility subject to the equal-
ized odds constraints, which requires that both groups have
equalized false positive rates, i.e. ,E[At = 1|Y t = 0, Z =
0] = E[At = 1|Y t = 0, Z = 1].

It can be seen that MaxUtil, DemParity and EqOpp
belong to the family of threshold policies.

4.2. Simulation result

Loan Application We leverage the loan application ex-
ample to examine the effects of cost ratio q. We define the
cost ratio q = X−

X++X−
as the fraction of change in the

features Xt for a negative outcome, with respect to the full
range it could change. We categorize the simulation settings
into three regimes based on the value of the cost ratio: (1)
forgiving setting: q < 1

2 (X+ = 150, X− = 75); (2) neu-
tral setting: q = 1

2 (X+ = X− = 75); (3) harsh setting:
q > 1

2 (X+ = 75, X− = 150).

In figure 4, we plot the final distribution of the target variable
Y under three different settings. Compared to the initial
distribution shown in figure 2, repeatedly enforcing a policy
change the shape of the distributions in a way that could
not simply captured by the group mean. All policies create
dichotomy and within group disparity on the target variable
distribution where “the rich gets richer”.

In figure 5 and figure 6, we plot the within-group disparity
and between-group disparity as a function of the cost ratio q
using mean and gini-coefficient as the aggregation function
respectively. When the cost ratio q is lower, EqOpp results
in higher between-group disparity when using mean as a
metric. As cost ratio increases, DemoPar results in the
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(a) MaxUtil.
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(b) DemoPar.
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Figure 4: Loan application example. The unfilled bar indi-
cate the initial distribution and the filled bars indicate the
final distribution. Top row: forgiving setting. Middle row:
neutral setting. Bottom row: harsh setting.

MaxUtil DemoPar EqOpp

Mean 0.011 0.005 0.024
Median 0.007 0.039 0.008
KL-divergence 0.034 0.414 0.301
Wasserstein 0.003 0.079 0.074

Table 1: Disparity ∆T when measured using different g
function (forgiving setting). The bold number indicates the
policy that results in the largest disparity. Using different
aggregation function g leads to different conclusions.

biggest disparity of mean outcome between the two groups.
This is in line with what we showed in the theoretical anal-
ysis above: lower thresholds would lead to an increase of
within-group disparity.

When using gini-coefficient as a metric, DemoPar leads to
highest between-group disparity. In general, as cost ratio
increases, gini-coefficient tends to increase for both within-
group and between-group disparity, which implies that un-
evenness within each group increases as the cost ratio in-
creases.
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Figure 5: Using mean to measure disparity as a function of
cost ratio q.
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Figure 6: Using gini-coefficient to measure disparity as a
function of cost ratio q.

Synthetic Gaussian (2d) The initial features for the two
groups is sampled from N (µ0, I) and N (µ1, I) respec-
tively, where µ0 = [0, 0]T and µ1 = [1, 1]T . We plot the
initial feature distributions in figure 2. The feature update
is X+ = [0.02, 0.01] and X− = [0.01, 0.02]). We simu-
late with two feature contribution matrix M1 = [1, 1] and
M2 = [1,−1], where the first/second feature is a ”bad” fea-
ture (negatively impacts the target variable) respectively. In
figure 3, we plot the final distribution of the features under
different structural equation fY . In the top row, both features
positively contribute to the target variable (fY (X) > 0). In
the bottom row, the second feature negatively contribute to
the target variable. This shapes the feature spaces differently
despite the feature update equation in the same.

4.3. Key Takeaways

In this work, we study if enforcing fairness constraints could
lead to backfire effects. We show that repeatedly enforc-
ing fairness constraints (DemoPar,EqOpp) could lead to
within-group disparity and between-group disparity than
MaxUtil. In addition, the evaluation of long-term impact
of fairness constraints is very sensitive to the metrics used
for measuring disparity and disparity, and different metrics
could lead to different conclusions on which fairness policy
leads to the biggest backfire effect.

5. Related Work
Several works have studied the dynamics between algorith-
mic decisions and the long-term population qualifications.
One of the first works that touches on this topic is [3], which
considers the one-step feedback model and shows that en-
forcing common static fairness metrics in constrained opti-
mization does not in general promote average group scores.
Later, [1] extends previous one-step analysis to multiple-
step using simulation, and argues that long-term dynamics
may lead to different conclusions from one-shot analysis.
[4] studies whether enforcing demographic parity could
lead to equality of qualifications. Most related to our work,
[6] studies the problem under a partially observed Markov
decision problem setting, and characterizes the impacts of
fairness constraints can have on the equilibrium of group
qualification rates. One thing that has been missing from
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previous work is that the analysis only focus on group mean
or the features or the qualification, yet an algorithm or pol-
icy could have more profound impact on the shape of the
population beyond group mean.
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A. Appendix
A.1. Additional Experiment Results

A.1.1. THRESHOLDS FOR EACH POLICY AS COST RATIO INCREASES

In figure 7, we plot the average thresholds of each policy as a function of the cost ratio.

Regardless of the group, MaxUtil’s threshold only depends on the parameter for the utility function ( u−
u−+u+

), which is set
as 0.5 in the experiment.

For DemoPar policy, it consistently overcompensate for the disadvantaged group by assigning a lower threshold for the
disadvantaged group.

The case with EqOpp is a little bit more complicated. As cost ratio increases, EqOpp switches from lower threshold for
disadvantaged group to lower threshold for advantaged group.
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Figure 7: Threshold as a function of cost ratio. The dashline indicates the threshold for advantaged group, and the solid line
indicates the threshold for disadvantaged group.

A.1.2. THRESHOLDS OF DIFFERENT POLICIES AS THE COST RATIO INCREASES.

As shown in figure 8, simulation on individuals coming from different quantile of the initial target variable different could
lead to different narratives. The EqOpp leads to the smallest impact for individuals starting at the 25th quantile, yet it leads
to the biggest backfire effect for individuals starting at the 75th quantile.

A.2. Proof of Lemma 1 and Theorem 1

A.2.1. INDIVIDUAL LEVEL EQUILIBRIUM

We first derive equilibrium conditions for target variable Y on an individual level, where E[Y t+1] = Y t.
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Figure 8: Evolution of target variable for individuals starting at 25th, 50th, and 75th quantile. Top: Synthetic Gaussian.
Bottom: Loan application example
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Let π : S → [0, 1] be the policy function/predictor that maps from states St to the probability of probability of a positive
action, i.e., P(At = 1) = π(St).

With threshold policies, the action At = 1 if and only if Y t > τ t, i.e. the feature values are above the threshold. For
threshold policies, we have

P(At = 1) = πt(Y t) = P(Y t ≥ τ t) = 1− P(Y t ≤ τ t)

By construction, the target variable indicates the probability of getting a positive outcome , i.e., P(Ot = 1) = Y t.

Let Xt
+ and Xt

− be the magnitude of change of feature value for positive outcome and negative outcome respectively.
Xt

+ = fX(Xt, At = 1, Ot = 1)−Xt

Xt
− = Xt − fX(Xt, At = 1, Ot = 0)

We can write E[Y t+1|At = 1, Ot = 1] by expanding on the structural equation, i.e.,
E[Y t+1|At = 1, Ot = 1] = fY (fX(Xt, At = 1, Ot = 1)) = fY (Xt +Xt

+)

E[Y t+1|At = 1, Ot = 0] = fY (fX(Xt, At = 1, Ot = 0)) = fY (Xt −Xt
−)

We can compute the expected value of Xt+1 as a function of Xt using law of total expectation:
E[Xt+1] = E[Xt+1|At = 1, Ot = 1]P[At = 1, Ot = 1] positive action and positive outcome

+ E[Xt+1|At = 1, Ot = 0]P[At = 1, Ot = 0] positive action and negative outcome

+ E[Xt+1|At = 0]P[At = 0] negative action

= (Xt +Xt
+)π(Y t)Y t + (Xt −Xt

−)π(Y t)(1− Y t) +Xt(1− π(Y t))

= Xt + π(Y t)[(X+ +X−)fY (Xt)−X−]

E[Y t+1] = E[fY (Xt+1)]

= fY (Xt +Xt
+)π(Y t)Y t + fY (Xt −Xt

−)π(Y t)(1− Y t) + fY (Xt)(1− π(Y t))

≈ fY (Xt) +∇fY (Xt)Xt
+π(Y t)Y t + fY (Xt)−∇fY (Xt)Xt

−π(Y t)(1− Y t) + fY (Xt)(1− π(Y t))

= Y t + π(Y t)∇fY (Xt)[(Xt
+ +Xt

−)Y t −Xt
−]

where we use first order linear approximation to approximate fY (Xt +Xt
+), where fY (Xt + ε) ≈ fY (Xt) +∇fY (Xt)ε.

Fixed point theorem The iteration achieves a fixed point x∗ when x∗ = Φ(x∗). According to Banach Fixed point, a
unique fixed point x∗ exists if Φ is a contraction mapping, i.e., d(Φ(x1), φ(x2)) ≤ Ld(x1, x2) for some distance function d
and Lipschitz constant L < 1.

The equilibrium happens when πt∇fY (Xt)[Y t(Xt
+ +Xt

−)−Xt
−] = 0, where

Y t =
∇fY (Xt)Xt

−
∇fY (Xt)(Xt

+ +Xt
−)

Counter-intuitively, the change direction of the target variable only depends on the feature contribution direction∇fY (Xt)

and cost ratio qt =
Xt

−
Xt

−+Xt
+

, not on the threshold value τ . On the other hand, the threshold value τ would impact the rate of

changing. Specifically, when τ is lower, π(Y t) = P(Y t ≥ τ) would be greater, and the changing rate of the target variable
would also be greater.

Using the recursion we have, we can find the cumulative change in Y :

E[Y T ]− Y 0 =

T∑
t=0

π(Y t)∇fY (Xt)(Y t(Xt
+ −Xt

−)−Xt
−)
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A.2.2. GROUP LEVEL EQUILIBRIUM

δTz = g(Y T
z )− g(Y 0

z )

=

T∑
t=0

g(P(Y t
z ≥ τ t)∇fY (Xt)[Y t

z (Xt
+ +Xt

−)−Xt
−])

=

T∑
t=0

g((1− FY t
z
(τ t))∇fY (Xt)[Y t

z (Xt
+ +Xt

−)−Xt
−])

where FY t
z

is the CDF distribution of the random variable Y from group z at time t.

∆t = |δtz=0 − δtz=1|
= |h(τ t1)− h(τ t2)|

where h(τ t) =
∑T

t=0 g((1 − FY t
z
(τ t))∇fY (Xt)[Y t(Xt

+ + Xt
−) − Xt

−]), and τ1 ,τ2 are thresholds for group z1 and z2
respectively.


