
Beyond Adult and COMPAS: Fairness in Multi-Class Prediction

Wael Alghamdi * 1 Hsiang Hsu * 1 Haewon Jeong * 1 Hao Wang 1 Peter Winston Michalak 1 Shahab Asoodeh 2

Flavio P. Calmon 1

Abstract
We produce fair probabilistic classifiers for multi-
class prediction via “projecting” a pre-trained clas-
sifier onto the set of models that satisfy target
group-fairness requirements. The new, projected
model is given by post-processing the outputs of
the pre-trained classifier by a multiplicative factor.
We provide a parallelizable iterative algorithm
for computing the projected classifier, and derive
both sample complexity and convergence guaran-
tees. Comprehensive numerical comparisons with
state-of-the-art benchmarks demonstrate that our
approach maintains competitive performance in
terms of accuracy-fairness trade-off curves, while
achieving favorable runtime on large datasets.

1. Introduction
Group-fairness interventions aim to ensure that a machine
learning (ML) model does not discriminate based on, for
example, race and/or sex. Extensive comparisons between
discrimination control methods can be found in (Bellamy
et al., 2018; Friedler et al., 2019; Wei et al., 2021). As these
studies demonstrate, there is still no “best” fairness inter-
vention for ML, with the majority of existing approaches
tailored to binary classification tasks, binary population
groups, or both. Moreover, discrimination control methods
are often tested on overused datasets of modest size col-
lected in either the US or Europe (e.g., UCI Adult (Lichman,
2013) and COMPAS (Angwin et al., 2016)). While binary
classification covers a range of ML tasks of societal impor-
tance, there are many cases where the predicted variable is
not binary, e.g., in education (grading scales) and healthcare
(disease severity). Even the original COMPAS algorithm
assigned a score between 1 to 10 to pre-trial defendants.
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We introduce a theoretically-grounded discrimination con-
trol method that ensures group fairness in multi-class pre-
diction for several population groups. When restricted to
two predicted classes, our method performs competitively
against state-of-the-art fairness interventions tailored to bi-
nary classification. Our approach is based on the informa-
tion theoretic formulation of information projection: Given
a probability distribution P and a convex set of distributions
P , what is the “closest” distribution to P in P? The study of
information projection can be traced back to (Csiszár, 1975),
which used KL-divergence to measure “closeness”; exten-
sions followed for f -divergences (Csiszár, 1995), Rényi
divergences (Kumar & Sason, 2016; Kumar & Sundaresan,
2015), and conditional distributions (Alghamdi et al., 2020).

Prior work on information projection relies on a critical—
and limiting—assumption: the underlying distributions
are known exactly. This is infeasible in practical ML ap-
plications, where only a set of training samples is avail-
able. We fill this gap by introducing an efficient proce-
dure for computing the projected classifier given finite sam-
ples, called FairProjection (FP). We also establish
convergence and sample complexity guarantees. Notably,
our procedure is parallelizable (e.g., on a GPU). Thus,
FairProjection scales to datasets with sizes compara-
ble to the population of many US states (> 106 samples).

Related work. The differentiating factors from prior work
are in Table 1. The fairness interventions that are the most
similar to ours are the FairScoreTransformer (Wei et al.,
2020; 2021, FST) and the pre-processing method in (Jiang
& Nachum, 2020). The FST and (Jiang & Nachum, 2020)
can be viewed as an instantiation of FairProjection re-
stricted to binary classification and cross-entropy (for FST)
or KL-divergence (for (Jiang & Nachum, 2020)) as the f -
divergence of choice. Unlike our method, (Jiang & Nachum,
2020) requires retraining a classifier multiple times.

Notation. The entries of a vector z are denoted by zj . We
set [N ] := {1, · · · , N} and R+ ≜ [0,∞). The probability
simplex over [N ] is denoted by ∆N . If P is a Borel proba-
bility measure over RN , Z ∼ P is a random variable, and
f : RN → RK is Borel, then the expectation of f(Z) is
denoted by E[f(Z)] = EP [f ] = EZ∼P [f(Z)].
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Method Feature
Multiclass Multigroup Scores Curve Parallel Rate Metric

Reductions (Agarwal et al., 2018) # ! ! ! # ! SP, (M)EO
Reject-option (Kamiran et al., 2012) # ! # ! # # SP, (M)EO

EqOdds (Hardt et al., 2016) # ! # # # ! EO
LevEqOpp (Chzhen et al., 2019) # # # # # # FNR
CalEqOdds (Pleiss et al., 2017) # # ! # # ! MEO

FACT (Kim et al., 2020) # # # ! # # SP, (M)EO
Identifying (Jiang & Nachum, 2020) # ! ! ! # # SP, (M)EO

FST (Wei et al., 2020; 2021) # ! ! ! # ! SP, (M)EO
Overlapping (Yang et al., 2020) ! ! ! ! # # SP, (M)EO
Adversarial (Zhang et al., 2018) ! ! N/A1 ! ! # SP, (M)EO

FairProjection (ours) ! ! ! ! ! ! SP, (M)EO

Table 1. Comparison between benchmark methods. Multiclass/multigroup: implementation takes datasets with multiclass/multigroup
labels; Scores: processes raw outputs of probabilistic classifiers; Curve: outputs fairness-accuracy tradeoff curves (instead of a single
point); Parallel: parallel implementation (e.g., on GPU) is available; Rate: convergence rate or sample complexity guarantee is proved.
Metric: applicable fairness metric, with SP↔Statistical Parity, EO↔Equalized Odds, MEO↔Mean EO, FNR↔False-Negative Rate.

2. Preliminaries and problem formulation
Fair ML. We fix two random variables X and Y , tak-
ing values in sets X ≜ Rd and Y ≜ [C]. A probabilistic
classifier is a function h : X → ∆C , where hc(x) rep-
resents the probability of sample x ∈ X falling in class
c ∈ Y . Let S be a group attribute (e.g., race and/or sex),
taking values in S ≜ [A]. We consider multi-class gener-
alization of three commonly used group fairness criteria in
Table 2. As observed by existing works (see, e.g., Agarwal
et al., 2018; Menon & Williamson, 2018; Celis et al., 2019;
Wei et al., 2020; Alghamdi et al., 2020), each of these fair-
ness constraints can be written in the vector-inequality form
EPX

[Gh] ≤ 0 for a closed-form matrix-valued function
G : X → RK×C . For instance, for statistical parity, the G
matrix evaluated at a fixed individual x ∈ X has K = 2AC
rows indexed by (δ, a, c′) ∈ {0, 1} × [A]× [C], where the
(δ, a, c′)-th row is equal to(∑

c∈[C] PS|X=x,Y=c(a)h
base
c (x)

(−1)δPS(a)
− (α+ (−1)δ)

)
ec′

with e1, · · · , eC denoting the standard basis for RC .

Fairness via information-projection. For a search space
H ⊂ ∆X

C ≜ {h : X → ∆C}, loss err : ∆X
C ×∆X

C → R,
and base classifier hbase ∈ ∆X

C , one seeks to solve:

minimize
h∈H

err
(
h,hbase

)
subject to EPX

[Gh] ≤ 0. (1)

1(Zhang et al., 2018) is an in-processing method unlike other
benchmarks in the table. It does not take a pre-trained classifier as
an input.

Fairness Criterion Expression

Statistical parity
∣∣∣∣∣PŶ |S=a(c

′)

PŶ (c′)
− 1

∣∣∣∣∣ ≤ α

Equalized odds
∣∣∣∣∣PŶ |Y =c,S=a(c

′)

PŶ |Y =c(c
′)
− 1

∣∣∣∣∣ ≤ α

Overall accuracy equality
∣∣∣∣∣P (Ŷ = Y | S = a)

P (Ŷ = Y )
− 1

∣∣∣∣∣ ≤ α

Table 2. Standard group fairness criteria; one fixes α > 0 and
iterates over all (a, c, c′) ∈ [A]× [C]2.

The function err quantifies “closeness” between the scores
of h and hbase, and one choice is f -divergence:

err
(
h,hbase

)
= Df (h∥hbase | PX) (2)

≜ EPX

∑
c∈[C]

hbase
c (X)f

(
hc(X)

hbase
c (X)

) ,

where f is a convex function over (0,∞) satisfying f(1) =
0. By varying different choices of f , we can obtain, e.g.,
cross-entropy (CE, f(t) = − log t) and KL-divergence
(f(t) = t log t). For a chosen f -divergence, the optimiza-
tion problem (1) becomes a generalization of information
projection (Csiszár, 1975).

Recall the definition of the convex conjugate.
Definition 2.1. For p ∈ ∆C , let Dconj

f ( · ,p) denote the
convex conjugate of Df ( · ∥p):

Dconj
f (v,p) ≜ sup

q∈∆C

vTq −Df (q ∥p). (3)
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In (Alghamdi et al., 2020), it is shown that (1) under an
f -divergence loss (2) reduces to solving2

D∗ ≜ min
λλλ∈RK

+

E
[
Dconj

f

(
−G(X)Tλλλ,hbase(X)

)]
. (4)

Using gradient-based methods to optimize (4) would be
hindered due to the intractability of ∇Dconj

f in most cases.
We address this problem next.

Problem formulation. In practice, only data points X ≜
{Xi}i∈[N ] ⊂ X drawn from PX are available. Thus, we
propose the following fairness intervention problem. We
search for a (multi-class) classifier h : X → ∆C that solves:

minimize
h:X→∆C

a:X→RC ,b∈RK

Df

(
h ∥hbase | P̂X

)
+ τ1 · (∥a∥22 + ∥b∥22)

subject to EP̂X
[G · (h+ τ2a)] ≤ τ2b,

(5)
with P̂X the empirical measure, τ1, τ2 > 0 are prescribed
constants, and ∥a∥22 ≜ EX∼P̂X

[
∥a(X)∥22

]
.3

Strong duality. We show that the unique solution for our
fairness optimization problem (5) is a tilt of hbase, under
the following assumption.

Assumption 2.2. f ∈ C2(R), f(1) = 0, f ′(0+) = −∞,
f ′′(t) > 0 for t > 0, and hbase

c (x) > 0 for (x, c) ∈ X× [C].

Theorem 2.3. Suppose Assumption 2.2 holds, and set ζ ≜
τ22 /(2τ1). There exists a unique solution hopt,N to (5), and
it is given by the formula

hopt,N
c (x) = hbase

c (x)ϕ
(
vc(x;λλλ

∗
ζ,N ) + γ(x;λλλ∗

ζ,N )
)

(6)

(x, c) ∈ X × [C], where: (i) the function v : X × RK →
RC is defined by v(x;λλλ) ≜ −G(x)Tλλλ; (ii) the function ϕ
denotes the inverse of f ′; (iii) the function γ : X×RK → R
is characterized by Ec∼hbase(x) [ϕ (γ(x;λλλ) + vc(x;λλλ))] =

1 and (iv) λλλ⋆
ζ,N ∈ RK is the unique solution to the strongly

convex problem

min
λλλ∈RK

+

EP̂X

[
Dconj

f

(
v(X;λλλ),hbase(X)

)]
+

ζ

2

∥∥∥GT
Nλλλ
∥∥∥2
2

(7)
where GN ≜

(
G(X1)√

N
, · · · , G(XN )√

N
, IK

)
∈ RK×(NC+K).

3. Fair projection and theoretical guarantees

Our algorithm. Theorem 2.3 yields a practical pro-
cedure for solving the functional optimization in equa-
tion (5): (i) compute the dual variables by solving the

2See Theorems 1–2 in (Alghamdi et al., 2020) for the details.
3The terms a and b are added to circumvent infeasibility issues

and aid convergence of our numerical procedure.

Algorithm 1 : FairProjection for solving (7).
Input: divergence f , predictions {pi ≜ hbase(Xi)}i∈[N ], con-
straints {Gi ≜ G(Xi)}i∈[N ], regularizer ζ, ADMM penalty ρ,
and initializers λλλ and (wi)i∈[N ].
Output: hopt,N

c (x) ≜ hbase
c (x) · ϕ(γ(x;λλλ) + vc(x;λλλ)).

Q← ζ
2
I + ρ

2N

∑
i∈[N ] GiG

T
i

for t = 1, 2, · · · , t′ do
ai ← wi + ρGT

i λλλ i ∈ [N ]

vi ← argmin
v∈RC

Dconj
f (v,pi) +

ρ+ζ
2
∥v∥22 + aT

i v i ∈ [N ]

q ← 1
N

∑
i∈[N ]

Gi · (wi + vi)

λλλ← argmin
ℓℓℓ∈RK

+

ℓℓℓTQℓℓℓ+ qTℓℓℓ

wi ← wi + ρ ·
(
vi +GT

i λλλ
)

i ∈ [N ]
end for

strongly convex optimization in (7); (ii) tilt the base clas-
sifier by using the dual variables according to (6). The
FairProjection algorithm uses ADMM (Boyd et al.,
2011) to solve the convex program (7). Algorithm 1 presents
the steps of FairProjection. A salient feature of
FairProjection is its parallelizability. Each step that
is done for i varying over [N ] can be executed for each i
in parallel. In particular, this applies to the most compu-
tationally intensive step, the vi-update step. For the KL-
divergence case, minimizing v 7→ Dconj

f (v,pi) + ξ∥v∥22 +
aT
i v reduces to a fixed-point equation for the softmax func-

tion, whose Lipschitzness yields exponentially fast conver-
gence for fixed-point methods. For a general f -divergence,
we reduce the vi-update step to a tractable 1-dimensional
root-finding problem that can also be solved efficiently.

Convergence guarantees. We show that our algorithm,
FairProjection, converges exponentially fast, and that
its output λλλ(logN)

N−1/2,N
performs well for the population prob-

lem (4).

Theorem 3.1. Under Assumption 2.2, FairProjection
for KL-divergence converges in4 t′ = O(logN) steps,
and runs in time O(N logN), to the unique solution λλλ∗

ζ,N

of (7). If λλλ(t)
ζ,N and h(t) are the t-th iteration outputs of

FairProjection, then ∥λλλ(t)
ζ,N −λλλ∗

ζ,N∥2 = O(e−t) and

h(t)(x) = hopt,N (x) · (1 +O(e−t)) uniformly as t → ∞.

Theorem 3.2. Suppose Assumption 2.2 holds, and consider
the KL-divergence case. Then, choosing ζ = Θ

(
N−1/2

)
and t = Ω(logN) we obtain for any δ ∈ (0, 1) and N =
Ω(log 1

δ ) that, with probability 1− δ, (see (4))

EX

[
Dconj

KL

(
v
(
X;λλλ

(t)
ζ,N

)
,hbase(X)

)]
≤D⋆+O

(
1√
N

)
.

4We use the standard asymptotic notation O,Ω, and Θ.



Beyond Adult and COMPAS: Fairness in Multi-Class Prediction

Method Reduction Rejection EqOdds LevEqOpp CalEqOdds FP
(Agarwal et al., 2018) (Kamiran et al., 2012) (Hardt et al., 2016) (Chzhen et al., 2019) (Pleiss et al., 2017) (ours)

Runtime 223.6 16.9 5.9 7.9 5.3 11.2

Table 3. Execution time of FP-CE on the ENEM (with 1.4M samples) compared with five baseline methods (time shown in minutes).
Methods in bold are capable of producing the full fairness-accuracy trade-off curves.

Benefit of parallelization. The parallelizability of
FairProjection provides significant speedup. We per-
form an ablation study comparing the speedup due to paral-
lelization. For the ENEM dataset (discussed next section),
parallelization yields a 15-fold reduction in runtime.

4. Empirical study
We show that FP (the constrained optimization in (5)) has
competitive performance in terms of runtime and fairness-
accuracy trade-off curves compared to benchmarks in Ta-
ble 1 (if reproducible codes are available). We use cross-
entropy (FP-CE) as the loss function, and mean equalized
odds (MEO) as the fairness constraint (cf. Table 2).

We adopt two datasets: HSLS (Ingels et al., 2011) and a
novel dataset ENEM (INEP, 2020). The HSLS dataset is
collected from high school students in the USA, whose fea-
tures include student and parent information, and the binary
label Y is students’ 9th-grade math test scores. The ENEM
dataset contains Brazilian college entrance exam scores with
students’ demographic and socio-economic information. It
contains ∼1.4 million samples with 139 features, and the
multiclass label Y is the Humanities exam score. For both
datasets, race is used as the group attribute S, and is included
as a feature for training (Agarwal et al., 2018).

Figure 1. Fairness-accuracy trade-off comparisons between
FP-CE and five baselines on ENEM and HSLS for binary class
prediction. For all methods, random forest is the base classifier.

Binary-classes/groups. FP-CE is compared with bench-
marks in terms of the MEO-accuracy trade-off (by vary-

Figure 2. MEO-accuracy trade-off for multi-class prediction on
ENEM. FairProjection-CE has a logistic regression base
classifier. Base accuracy for FP-CE = 0.336, Adversarial
= 0.307, and random guessing accuracy = 0.2.

ing α) on ENEM5 and HSLS in Fig. 1. FP-CE and
Reduction have the overall best and most consistent per-
formances; although EqOdds achieves the best fairness,
that fairness comes at the cost of 4% accuracy drop. FP-CE
has the smallest accuracy drop whilst improving MEO from
0.17 to 0.04 on HSLS. LevEqOpp achieves comparable
MEO with a slight accuracy drop. Note that in the high
fairness regime, the accuracy of Rejection deteriorates.
We exclude CalEqOdds since it yields inconsistent perfor-
mance when the strict calibration requirement is not met.

Multi-classes. Fig. 2 shows MEO-accuracy trade-off of
FP-CE and Adversarial (Zhang et al., 2018) on multi-
class prediction with ENEM (Y quantized into 5 classes).
As their base classifiers are different (Adversarial is
based on GANs), we plot accuracy difference compared
to the base classifier instead of the absolute value of ac-
curacy. Compared to Adversarial, FP-CE improves
MEO significantly with very small loss in accuracy.

Runtime. Table 3 report the runtime on ENEM with ∼
1.4M samples. EqOdds, LevEqOpp, and CalEqOdds
are faster than FP-CE as they only produce one trade-off
point. The benchmarks that produce full fairness-accuracy
trade-off curves have slower runtime than FP.

5We downsample ENEM with 50k samples, and binarize the
labels and groups for consistent comparison.
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