RISE: Robust Individualized Decision Learning with Sensitive Variables

An illustrative example

Binary actions $A \in \{-1,1\}$. Note that the decision can only be made based on baseline covariate X whereas S is a sensitive variable.

Table 1: Toy example setup.							
	$X \le 0.5$		X > 0.5				
(X, S, A)	S = 0	S = 1	S = 0	S = 1			
l = -1	11	13	5	27			
A = 1	30	0	15	13			

Table 2: Toy example results.

	Average reward		
	Overall	Vulnerable	
ean-optimal rule	14.4	7.1	
RISE	13	14	

Red: vulnerable subjects (those with low outcome values given X)

Blue: The worst-case outcomes of the

rule by the proposed RISE

For $X \leq 0.5$.

- Mean-optimal rule gives A = 1, as it achieves the largest average reward across S = 0and S = 1.
- However, this greatly harms subjects with S = 1 as they could get the worst expected outcome of 0.
- RISE gives A = -1, which improves the worst-case outcome of these vulnerable subjects

RISE achieves a larger reward among vulnerable subjects while maintaining a comparable overall expected reward

Robust Optimality with Sensitive Variables

The proposed RISE estimates the following IDR

$$d^* \in \arg\max_{d \in \mathbb{D}} E_X \left[G_{S|X} \{ E(Y|X, S, A = d(X)) \} \right]$$

where $G_{S|X}(\cdot)$ could be chosen as some risk measure for evaluating E(Y|X, S, A = d(X)) for each $S \in S$, e.g., variance, quantiles

For discrete S (infimum): find A with the best worst-case scenario among all possible values of S for every $X \in X$

 $d^* \in \operatorname{argmax}_{\mathbb{D}} E_X[\inf_{s \in \mathbb{S}} \{ E(Y|X, S = s, A = d(X)) \}]$

 $d^{*}(X) \in \text{sign}(\inf_{s \in \mathbb{S}} \{ E(Y|X, S = s, A = 1) - \inf_{s \in \mathbb{S}} \{ E(Y|X, S = s, A = -1) \})$

For continuous S (conditional quantile): find A with the largest τ -th quantile of the outcome over the distribution related to S

$$d^* \in \operatorname{argmax}_{\mathbb{D}} E_X \left[Q_{S|X}^{\tau} \{ E(Y|X, S, A = d(X)) \} \right]$$

$$T) \in \operatorname{sign}(\{ Q_{S|X}^{\tau} \{ E(Y|X, S, A = 1) \} - Q_{S|X}^{\tau} \{ E(Y|X, S, A = -1) \}$$

Estimate $d^*(X)$ with a classification-based optimization framework

	Input Trainin
	Output Estim
1:	$\hat{Y}_i(x_i,s_i,a_i)$
2:	if S is continu
3:	$g_1(x_i) \leftarrow$
4:	$g_2(x_i) \leftarrow$
5:	if S is discrete
6:	$g_1(x_i) \leftarrow$
7:	$g_2(x_i) \leftarrow$
8:	$\hat{d} \leftarrow \text{Build a v}$
9:	Return \hat{d}

Three real-world examples from fairness and safety perspectives

Datas

NSW log(incon

ACTG CD4 T-cell

> Seps survival

Main Contributions

Xiaoqing Tan (xit31@pitt.edu) Zhengling Qi @ GWU Christopher W. Seymour

Algorithm 1 RISE (Robust individualized decision learning with sensitive variables)

ng data $\mathcal{D}_n = \{Y_i, A_i, X_i, S_i\}_{i=1}^n$

Lu Tang

nated decision rule \hat{d}

 \leftarrow Model E(Y|X, S, A = a) using \mathcal{D}_n with a = 1 and a = -1, respectively.

uous **then** Model $Q_{S|X,A}\{E(Y|X, S, A = a)\}$ via quantile regressions of $\hat{Y}_i(x_i, s_i, a_i)$ on x_i , for \mathcal{D}_n with a = 1.

Model $Q_{S|X,A}{E(Y|X, S, A = a)}$ via quantile regressions of $\hat{Y}_i(x_i, s_i, a_i)$ on x_i , for \mathcal{D}_n with a = -1.

e then

Compute $\inf_{s \in \mathbb{S}} \{ \hat{Y}_i(x_i, s, a_i = 1) \}, \forall i.$

Compute $\inf_{s \in \mathbb{S}} \{ \hat{Y}_i(x_i, s, a_i = -1) \}, \forall i.$

weighted classification model with features x_i , label sgn $\{g_1(x_i) - g_2(x_i)\}$, and sample weight $|g_1(x_i) - g_2(x_i)|$.

Real-data Applications

(a) Fairness in a job training program (LaLonde, 1986)

(b) Improvement of HIV treatment (Hammer et al., 1996)

(c) Safe resuscitation for patients with sepsis (Seymour et al., 2016)

set	IDR	Obj. (all)	Obj. (vulnerable)	Value (all)	Value (vulnerable)
V ne+1)	Base Exp RISE	5.26 (0.04) 5.22 (0.04) 5.43 (0.04)	5.28 (0.05) 5.24 (0.05) 5.44 (0.04)	6.32 (0.05) 6.37 (0.05) 6.42 (0.04)	6.33 (0.07) 6.37 (0.07) 6.42 (0.06)
175 amount	Base Exp RISE	336.9 (1.65) 337.5 (1.65) 351.5 (1.67)	338.1 (2.23) 338.9 (1.80) 351.2 (1.80)	350.5 (1.86) 351.9 (1.95) 351.8 (1.88)	357.5 (2.24) 359.1 (2.21) 363.1 (2.19)
is 1 rate	Base Exp RISE	0.752 (0.001) 0.752 (0.001) 0.771 (0.001)	0.721 (0.001) 0.721 (0.002) 0.735 (0.001)	0.965 (0.001) 0.966 (0.001) 0.972 (0.001)	0.905 (0.002) 0.908 (0.002) 0.923 (0.002)

• We propose a novel framework to handle sensitive variables in **causality**driven decision making. Robustness is introduced to improve the worst-

case outcome caused by sensitive variables

To the best of our knowledge, we are among the first to propose a **robust**-

type fairness criterion under causal inference

• We introduce a flexible classification-based optimization framework

that can easily leverage most existing classification tools

• We illustrate the robustness of RISE using **three real-world examples**

from fairness and safety perspectives