

Prisoners of Their Own Devices:

How Models Induce Data Bias in Performative Prediction

José Pombal | Pedro Saleiro | Mário A. T. Figueiredo | Pedro Bizarro

Motivation

- By making discriminatory predictions, ML models have the potential to exacerbate existing societal inequities
- Most works in Fair ML focus on **measuring unfairness in static** algorithmic prediction tasks
- However, most real-world applications operate in **dynamic**, **performative prediction environments** (e.g.: fraud detection)
- In these settings, **model behaviour** influences the data's distribution and its biases, resulting in unfairness downstream

Contributions

- We propose a **data bias taxonomy** to characterize bias between a protected attribute, other features, and the target
- We model 2 scenarios where data bias is induced by the predictive model itself
- We use **real-world performative prediction use-case** as an example: bank account opening fraud
- We show how **biases in these settings have detrimental** and unpredictable effects on performance and fairness

Data Bias Taxonomy

Y: target variable X: features **Z**: protected attribute (categorical)

Base Bias Condition

P[X, Y] ≠ **P**[X, Y | Z]

The protected attribute is statistically related to either X,

Y or both

Group-wise Class-conditional Distribution Bias

P[X | Y] ≠ **P**[X | Y, Z]

The feature distribution conditioned on the target varies from group to group in Z

Dynamic Bias

BC train ≠ BC production

Bias conditions (BC) in the training set differ from the ones found in production (testing)

Noisy Labels Bias

P*[Y | X, Z] ≠ P[Y | X, Z]

Some observations belonging to a protected group have been incorrectly labeled

Scenario 1: Adaptive fraudsters			Scenario 2: Noisy Selective Labels	
Conclusions			Conclusions	
Performance and fairness	The best models (opaque points)	Fairness-aware models could have fallen back to Unbiased Baseline instead of Adaptation	FPR targets and fairness are put in jeopardy if selective labels are taken as label positives	
decreased substantially with fraudsters' adaptation	on Performance Ideal were not the best after Adaptation		No Fairness Intervention Group-wise Thresholding 0.30 0.25 0.25 Over time, using model rejections as positive labels is enough to operate at much higher	
1.0			0.20 6 6 6 15 10 15 10 10 10 10 10 10 10 10 10 10	

fairness intervention (group-wise thresholding)¹ to find that there is **a** tendency over time for it to become less effective in the test set, despite the validation indicating otherwise!

3

