TECNICO
LISBOA

U

feedzal  Prisoners of Their Own Devices:

2 instiutoce How Models Induce Data Bias in Performative Prediction

telecomunicacoes

José Pombal | Pedro Saleiro | Mario A. T. Figueiredo | Pedro Bizarro

Motivation Contributions

e By making discriminatory predictions, ML models have the e We propose a data bias taxonomy to characterize bias
potential to exacerbate existing societal inequities between a protected attribute, other features, and the target

e Most works in Fair ML focus on measuring unfairness in static e We model 2 scenarios where data bias is induced by the
algorithmic prediction tasks predictive model itself

e However, most real-world applications operate in dynamic, e We use real-world performative prediction use-case as an
performative prediction environments (e.g.: fraud detection) example: bank account opening fraud

e In these settings, model behaviour influences the data's e We show how biases in these settings have detrimental
distribution and its biases, resulting in unfairness downstream and unpredictable effects on performance and fairness

Data Bias Taxonomy

Y: target variable

X:features | Base Bias Condition
Z: protected attribute (categorical)
P[X, Y] #P[X, Y | Z]

The protected attribute is statistically related to either X,

Y or both
Group-wise
Class-conditional Dynamic Bias Noisy Labels Bias
Distribution Bias
PIX | Y1#P[X Y, Z] BC train # BC production P*[Y | X, Z] # P[Y | X, Z]
The feature distribution Bias conditions (BC) in the Some observations belonging
conditioned on the target training set differ from the ones to a protected group have
varies from group to group in Z found in production (testing) been incorrectly labeled
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- @ Train and test 50 models on 3 variants of the original dataset : Set
. ¢ On Unbiased Baseline the protected attribute is independent of X - .
. From here, training set
andY becomes noisy as well
- @ On Performance Ideal fraud is easier to detect using the protected
attribute in train and test; > Time 2: Train Set Validation Test Set

Set

. ¢ On Adaptation fraud is easier to detect using Z in the training set, -
but not in the test set : . -




