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Introduction

Soft & Hard Tree: Soft tree is a tree in which
each split is probabilistic and thus each input is
assigned to each decision region with certain
probability and the model prediction is a
weighted sum of the prediction of each region.
The biggest difference between soft trees and
hard trees is the splitting network — soft trees
have probabilistic splitting network while hard
trees have deterministic one.
Motivation: Interpretability is an important
property of models that are deployed for high
stakes decision‐making tasks. Although trees are
human‐interpretable, their optimization is
challenging. First, trees are often trained greedily.
Second, trees cannot be easily incorporated into
end‐to‐end training pipelines with other models
since traditional tree training is not differentiable.
To address these issues, a body of works
proposes to first train a soft tree and then harden
the soft tree into a hard one. In practice, the
hardening process works well for trees in
classification settings due to the discretization
nature of classification tasks. Unfortunately, for
regression tasks, these promises have not been
realized: there is often a performance gap when
obtaining hard trees via soft tree training.
Our Work: We systematically study two types
of soft trees. We summarize two key factors
contributing to the performance gap of trees on
regression tasks. (1) Soft trees training is highly
non‐convex (with many local optima); thus, the
training process is very sensitive to initialization
and learning rate; thus, moving from optimizing a
non‐differentiable loss function to a continuous
but highly non‐convex may provide limited
practical benefit. (2) The hardening process does
not preserve the relative orderings of the loss: a
soft tree with a low loss might harden to a tree
with high loss, whereas a soft tree with slightly
worse performance might harden to a much
better hard tree.

Background

We formalize soft trees using Hierarchical Mixture
of Experts (HMEs). We consider a regression task
consisting of N observations, D = {xn, yn}N

n=1
with xn ∈ Rl, yn ∈ Rk. We consider a binary
HME of depthD with 2D −1 gating networks at the
non‐terminal nodes and 2D expert networks at the
leaf nodes. The gating networks divide the input
space into a set of regions with expert networks
determining the predicted values of each region.

We are interested in the performance of hard
trees. To obtain a hard tree, instead of marginal‐
izing over leaf nodes, we assign the input to leaf
nodes following the path with the greatest proba‐
bility,

phard(yn|xn, v, τ) = p(t|hj∗ (xn), τj∗ )

where j∗ = arg maxj p(ξj |xn, v). We define the
above process as hardening. By hardening, we
hope to gain an interpretable model while retain‐
ing the predictive performance of the soft tree.

In this work, we investigate expert networks de‐
fined by two different link functions: (1) constant
experts hj(xn) = c where c ∈ Rk , (2) linear ex‐
perts with hj(xn) = Wjxn where Wj ∈ Rk×l.

Experimental Setup

Overview: We define the difference in terms of
the predictive performance between the soft and
the corresponding hardened model as the
performance gap due to hardening. We investigate
the performance gap with two types of soft trees:
HMEs with constant experts for easy analyses,
and HMEs with linear experts for more
complicated regression tasks.
Datasets: We designed two toy datasets: (1) a
step function with 4 pieces, which matches
inductive biases of HMEs with constant experts;
(2) a cubic function y = 3x3 with a sparse data
region, which is a common benchmark for
uncertainty quantification.
Evaluation Metrics: For the step function, we
compare the MSEs of soft and hard trees. For the
cubic funcion, we investigate the likelihood.

Experimental Results

Issue 1: Ill‐behaved Loss Landscape. The loss
function of soft trees has local optima with
high curvature and large plateaus, which are
hard to escape. Figure 1a shows the trace of
the soft tree loss of the step function during
training. We see that SGD reaches the first
local optima around 15k iteration. Figure 1b
plots the loss landscape near the first optima,
which is deep, and thus hard to escape.
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Figure 1. The landscape of the loss function of the step
function: (a) trace of the loss function of 50k training
iterations. (b)(c) The surface plots of the loss function near the
two local optima (black line and red line in (a), respectively).

Soft tree training is highly sensitivity to
hyperparameters. Because of the high
curvature and the plateau of the loss
landscape, learning is highly sensitive to the
choice of initialization and learning rate, and
thus the tree performance has a large variance.
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Figure 2. Plots of the best soft tree during training and the
corresponding hard tree performance given different
initialization strategy.

Experimental Results-Continued

Issue 2: Inconsistency with the Hard Tree Loss.
Soft tree losses do not preserve the relative
ordering of hard tree losses. A better soft tree
does not necessarily harden to a better hard
tree. In Figure 1a, we see that during training,
the trend of the hard tree loss (blue curve) is
not consistent with the one of the soft tree
(green curve). During training, the loss of the
hard tree increases around the 20k‐th iteration
and then decreases drastically around the
30k‐th iteration. Contrarily, the loss of the soft
tree decreases in general. Comparing Figure 2a
to 2b, we see that a better soft tree can result
in a much worse hard tree.
Similar inconsistency can be observed in terms
of log‐likelihood. Figure 3 shows the
posterior predictive distribution of tree
ensembles with increasing tree depth. We see
that soft trees with higher log‐likelihood
harden to trees with lower log‐likelihood.

(a) Performance of Soft Tree Ensembles
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Figure 3. Plots of posterior predictive distribution with
different depths on the cubic function task (a) the soft tree
ensembles (b) the corresponding hard tree ensembles.

The Trade‐off Between Soft Optimization and
Performance Gap Due to Hardening. When β
increases, the performance gap due to
hardening decreases. However, the loss
function becomes harder to optimize.

(a) Trees with β = 3 (b) Loss surface with β = 3

(c) Trees with β = 5 (d) Loss surface with β = 5

Figure 4. Plots of soft and hard tree performance and loss
surface with β = 3, 5.

Conclusion

This paper systematically studies factors contribut‐
ing to the performance gap between soft trees and
their hardened counterparts. We also show that
simple methods for closing the performance gap do
not necessarily yield hard trees with better predic‐
tive performance ‐ as they trade‐off between diffi‐
cult soft optimization and performance gap due to
hardening. Although existing works aim to obtain
predictive and interpretable models by globally op‐
timizing soft trees and then hardening the solution,
we show that this way of training hard trees does
not get around fundamental issues on how funda‐
mentally difficult it is to train a hard tree.
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