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‣ Assortment optimization: optimize an assortment (set) of items to 
optimize revenue under a choice model, e.g. Multinomial choice 
(MNL)  

‣ But decisions regarding revenue and recommendations can impact 
customer engagement over time 

‣ Interleaving dynamic decision-making over time (long-term 
customer dynamics) with single-timestep contextual learning 

‣ Our contributions:  
‣ Model: episodic RL setting with disengagement based on 

purchase history  
‣ Static characterization: structural results when  
‣ Dynamic learning setting: episodic RL algorithm combining 

UCRL and ideas from generalized linear UCB 

Setup 
Dynamic Contextual Learning

‣ Choose an assortment out of  items,  

‣ Each item has attractiveness  (later, contextual in item utility) 

Customer purchases item  w.p. , revenue  

Expected revenue is  
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Contextual Dynamic Decision protocol:  
‣ For episode 0 … K  
‣ New customer. 
‣ If contextual:  

Observe  many -dim item contexts,  
‣ For timestep 0 … T  
‣ Customer “engages” (logs on) w.p. .  

If customer engages, you can sell them something 
Action: choose an assortment  

‣ Customer purchases with prob. ,  
collect reward  

‣ If customer purchased (and engaged),  
increment state by 1,  
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Model
‣ Dynamic model:  

State: 

  

Assumption: Engagement dynamics.  
Iff a customer engages, she is shown  and may make a purchase. 
If she purchases, engagement level  increases by 1. 
 
 
 
 

x ∈ [T ] ∪ 0 cumulative number of purchases
Z ∈ {0,1} customer engagement

S
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‣  
Non-learning setting - known  

‣ - Dynamic formulation:  
Value function:  

 

‣ And . 

‣ Assumption:  is monotone increasing 
‣Lemma: Revenue-ordered assortments. Denote 

. 

The optimal solution to the problem  

is revenue-ordered.That is, if the items are indexed such that 
, then the optimal assortment  for 

some index .
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Results

‣ Contextual linear utility:  

‣ Assumption:  
 

Transitions factorize into state- and time-invariant  
contextual probabilities, and dynamic/sequential p(x) 

‣ Episodic regret 

vi = exp(w⊤
i β*)

P(x + 1 ∣ x, S) = ϕ(S; β)p(x)
ϕk,t(S; β)

Regret(K) =
K

∑
k=1

J*k,0(0) − Jπk
k,0(0)

‣ Estimators:  solves regularized max-likelihood from engagement data 
: empirical engagement probabilities at x,   

‣ Confidence intervals  (for ),  

‣ Optimistic estimates   

‣ Assumptions: There exists some  such that for all , and
, we have 
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Algorithm

Algorithm: UCRL & linUCB  
‣ For episode 0 … K  
‣ New customer. Observe item contexts and update covariance 

matrix.  

‣ Update estimates  
‣ Optimistic parameters ;  
‣ Optimistic planning: For timestep 0 … T  

‣  

‣  

** Use revenue-ordering Lemma for computationally easy planning
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‣ Theorem: Regret bound 

𝔼 [Regret(K)] = Õ (max ( σ
κ

dλ, T2) KT)
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