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Setting: Sequential Allocations

Allocation problems:  allocating limited resources among a population to
maximize an objective

Dynamic setting: sequential allocations with feedback, such that
current decisions may change future population

distribution in different ways

Past results: Static fairness constraints might lead to negative

\ long-term effects /
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Use Case: College Admissions

Affirmative action: favoring individuals belonging to disadvantaged

groups (e.g., by setting a lower acceptance threshold)
Possible feedback effects: Iv
Positive: generate more role models (investment incentive)

Negative: reduce chances of graduation (reinforce stereotypes)

Model: Markov Decision Process (MDP)

Population partitioned based on constant affiliation
with constant group sizes

Advantaged group (A): success probability = ability
Disadvantaged group (D): success probability < ability

State (s): current bias (upper bound of the success distribution of D)

Success distributions: o [ Admitted

0 Op St - Relative success dynamics - success probability of admitted
0 0, 1 students from D

Decision maker (DM) \
1. Takes action: sets admission thresholds 64,6y

one for each group, admits a constant fraction of the population

2. Receives reward (R): fraction of successful students

Goal: maximizing utility (U, discounted sum of rewards) v = Ztht

Transition function: bias dynamics

- Representation dynamics - fraction of selected students from D
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/ Utility Maximizing Policy

Optimization: Policy Iteration (infinite horizon, discrete state space)

No fairness constraints

Threshold

- Both policies apply preferential treatment (PT), but in different ways
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Fairness of a policy: /

Discounted sum of state fairness

- The effect of affirmative action on long-term fairness strongly A
ate State
depends on the dynamics _ , _
= lower threshold for disadvantaged PT = higher threshold for disadvantaged
| Policy Fairness ™
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\ State fairness:

The corresponding bias factor

Fairness-Utility Trade-off : : : :
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trade-off, dependent on the discount factor.

- Yet, fairness and utility are aligned in the long-term, p——
the trade-off is between short-term and long-term  Long =,
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Future Work
a , , N
Facing Uncertainty Method
In reality we do not know the bias dynamics ::> Learn transition function using Bayesian Linear Regression
_ MDP with unknown transition function Learn optimal policy under current belief using Policy Gradient y
o
UNIVERSITY
OF OSLO

Université de Neuchatel



