

# Beyond Adult and COMPAS: Fairness in Multi-Class Prediction

Wael Alghamdi\*, Hsiang Hsu\*, Haewon Jeong\*, Hao Wang, Peter Winston Michalak, Shahab Asoodeh, Flavio P. Calmon Harvard University

alghamdi@g.harvard.edu, flavio@seas.harvard.edu; (\* Equal contribution)

## Main Idea

Given an unfair base classifier  $h^{\text{base}}: \mathcal{X} \to \Delta_C$  from dataset  $\mathcal{X} \subset \mathbb{R}^d$  to C possible classes, we produce the closest fair classifier  $h^{\text{opt}}$ .

Several fairness criteria (e.g., Statistical Parity, Equalized Odds, Overall Accuracy Equality) can be written in linear form:

$$\mathbb{E}[\mathbf{G}(X) \cdot \boldsymbol{h}(X)] \leq \mathbf{0}.$$

We find  $h^{\text{opt}}$  from i.i.d. samples  $\mathbb{X} = \{X_i\}_{i \in [N]} \subset \mathbb{R}^d$  by solving:

with  $D_f$  the f-divergence,  $\widehat{P}_X$  the empirical measure,  $\tau_1, \tau_2 > 0$  are prescribed constants, and  $\|\mathbf{a}\|_2^2 \triangleq \mathbb{E}_{X \sim \widehat{P}_X} \left[ \|\mathbf{a}(X)\|_2^2 \right]$ .

We transform the fairness problem into a finite-dimensional, strongly convex optimization problem, and propose a fast ADMM-based algorithm to solve it.

## Strong Duality

The optimal classifier is given by a tilt:

$$h_c^{\text{opt},N}(x) = h_c^{\text{base}}(x)\phi\left(v_c(x; \boldsymbol{\lambda}_{\zeta,N}^*) + \gamma(x; \boldsymbol{\lambda}_{\zeta,N}^*)\right)$$

where  $v(x, \lambda) = -\mathbf{G}(x)^T \lambda$ ,  $\phi = (f')^{-1}$ , and  $\lambda_{\zeta, N}^*$  is the unique solution to the strongly convex problem:

$$\min_{oldsymbol{\lambda} \in \mathbb{R}_+^K} \; \mathbb{E}_{\widehat{P}_X} \left[ D_f^{ ext{conj}} \left( oldsymbol{v}(X;oldsymbol{\lambda}), oldsymbol{h}^{ ext{base}}(X) 
ight) 
ight] + rac{\zeta}{2} \left\| oldsymbol{\mathcal{G}}_N^T oldsymbol{\lambda} 
ight\|_2^2$$

where 
$$m{\mathcal{G}}_N = \left( rac{\mathbf{G}(X_1)}{\sqrt{N}}, \cdots, rac{\mathbf{G}(X_N)}{\sqrt{N}}, m{I}_K 
ight) \in \mathbb{R}^{K imes (NC+K)}$$
.

#### Proposed Parallel Algorithm

#### Algorithm 1: FairProjection.

Input: divergence f, predictions  $\{\boldsymbol{p}_i \triangleq \boldsymbol{h}^{\text{base}}(X_i)\}_{i \in [N]}$ , constraints  $\{\boldsymbol{G}_i \triangleq \boldsymbol{G}(X_i)\}_{i \in [N]}$ , regularizer  $\zeta$ , ADMM penalty  $\rho$ , and initializers  $\boldsymbol{\lambda}$  and  $(\boldsymbol{w}_i)_{i \in [N]}$ .

Output: 
$$h_c^{\text{opt},N}(x) \triangleq h_c^{\text{base}}(x) \cdot \phi(\gamma(x; \lambda) + v_c(x; \lambda)).$$

$$oldsymbol{Q} \leftarrow rac{\zeta}{2} oldsymbol{I} + rac{
ho}{2N} \sum_{i \in [N]} oldsymbol{G}_i oldsymbol{G}_i^T$$

$$\begin{aligned} & \mathbf{for}\ t = 1, 2, \cdots, t'\ \mathbf{do} \\ & \boldsymbol{a}_i \leftarrow \boldsymbol{w}_i + \rho \boldsymbol{G}_i^T \boldsymbol{\lambda} \end{aligned} \qquad \qquad i \in [N]$$

$$oldsymbol{v}_i \leftarrow \operatorname*{argmin}_{oldsymbol{v} \in \mathbb{R}^C} D_f^{ ext{conj}}(oldsymbol{v}, oldsymbol{p}_i) + rac{
ho + \zeta}{2} \|oldsymbol{v}\|_2^2 + oldsymbol{a}_i^T oldsymbol{v} \quad i \in [N]$$

$$oldsymbol{q} \leftarrow rac{1}{N} {\sum_{i \in [N]}} oldsymbol{G}_i \cdot (oldsymbol{w}_i + oldsymbol{v}_i)$$

$$oldsymbol{\lambda} \leftarrow \operatorname*{argmin}_{oldsymbol{\ell} \in \mathbb{R}_+^K} oldsymbol{\ell}^T oldsymbol{Q} oldsymbol{\ell} + oldsymbol{q}^T oldsymbol{\ell}$$

$$m{w}_i \leftarrow m{w}_i + 
ho \cdot \left( m{v}_i + m{G}_i^T m{\lambda} \right)$$
 end for



Fairness-accuracy trade-off comparisons between FairProjection-Cross Entropy and five baselines on the ENEM and HSLS datasets for binary class prediction. For all methods, random forest is the base classifier.

### Theoretical Guarantees

For the KL-divergence:

- 1. FairProjection converges in  $O(\log N)$  steps,
- 2. FairProjection runs in time  $O(N \log N)$ ,
- 3. FairProjection converges to the unique solution  $\lambda_{\zeta,N}^*$ ,
- 4. the *t*-th iteration satisfies  $\|\boldsymbol{\lambda}_{\zeta,N}^{(t)} \boldsymbol{\lambda}_{\zeta,N}^*\|_2 = O(e^{-t})$ ,
- 5. the t-th iteration satisfies  $h^{(t)}(x) = h^{\text{opt},N}(x) \cdot (1 + O(e^{-t}))$  uniformly,
- 6. for  $\zeta = \Theta(N^{-1/2})$ , FairProjection is within  $O(N^{-1/2})$  from solving the population problem.

FairProjection is parallelizable: the inner routines of FairProjection can be executed in parallel for each sample  $X_i$ ,  $i \in [N]$ .



MEO-accuracy trade-off for multi-class prediction on the ENEM dataset. FairProjection-Cross Entropy has a logistic regression base classifier. Base accuracy for FairProjection is = 0.336, Adversarial = 0.307, and random guessing accuracy = 0.2.